Exploring the Relationship between the Sentiments of Young People and Urban Green Space by Using a Check-In Microblog
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Samples
2.3. Data Acquisition
2.4. Data Processing and Analytical Methods
3. Results
3.1. Correlation Analysis of the Greening Index and Sentiment
3.2. Effects of Greening and Related Potential Factors on Sentiment
3.3. Interaction between Greening Index and POI Type
4. Discussion
4.1. The Influence of GVI and NDVI on Sentiment
4.2. Differences in Public Sentiment among Different Socioeconomic Location Types
4.3. The impact of Green Space on Public Sentiment in Different Location Types
4.4. Green Space Optimization Based on the Psychological Benefits to Younger Populations
4.5. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Random Intercept Logistic Regression Model
Performance Statistic | 200 m | 500 m | 1000 m | |||
---|---|---|---|---|---|---|
Mixed Model | Fixed Model | Mixed Model | Fixed Model | Mixed Model | Fixed Model | |
AIC | 118,581.1 | 123,120.6 | 118,580.9 | 123,129.2 | 118,574.8 | 123,003.2 |
0.033 | 0.033 | 0.032 |
Categorical Variable | Frequency | Percentage | |
---|---|---|---|
Sentiment | Negative | 19,466 | 18.5 |
Neutral | 2657 | 2.53 | |
Positive | 83,091 | 78.97 | |
POI type | Residential (base) | 25,843 | 24.56 |
Industrial | 2405 | 2.29 | |
Commercial Facility | 32,874 | 31.24 | |
Public Service Facility | 31,424 | 29.87 | |
Green Square | 8541 | 8.12 | |
Road Traffic | 4127 | 3.92 | |
Dew point (°C) | ≤2 (base) | 8020 | 7.62 |
2–<16 | 34,307 | 32.61 | |
16+ | 62,887 | 59.77 | |
PM2.5 (μg/m3) | ≤35 (base) | 83,818 | 79.66 |
35–<75 | 19,421 | 18.46 | |
75–<115 | 1706 | 1.62 | |
115–<150 | 222 | 0.21 | |
150+ | 47 | 0.04 | |
Temperature (°C) | <0 (base) | 583 | 0.55 |
0–<7 | 6855 | 6.52 | |
7–<12 | 11,550 | 10.98 | |
12–<18 | 16,493 | 15.68 | |
18–<26 | 29,519 | 28.06 | |
26+ | 40,214 | 38.22 | |
Rain | No (base) | 97,696 | 92.85 |
Yes | 7518 | 7.15 | |
Day | No (base) | 57,906 | 55.04 |
Yes | 47,308 | 44.96 | |
Day of week | Weekend (base) | 32,798 | 31.17 |
Weekday | 72,416 | 68.83 |
Continuous Variable | Median (P25, P75) | IQR |
---|---|---|
Buffer of average GVI (%) | ||
GVI 200 m | 11.22 (7.43, 15.54) | 8.11 |
GVI 500 m | 11.44 (9.38, 15.39) | 6.01 |
GVI 1000 m | 12.35 (10.35, 14.53) | 4.18 |
Buffer of average NDVI (%) | ||
NDVI 200 m | 12.18 (6.27, 20.04) | 13.77 |
NDVI 500 m | 13.99 (8.72, 22.36) | 13.64 |
NDVI 1000 m | 14.55 (9.30, 22.36) | 13.06 |
Buffer Size | POI Type | Coefficient (95% CI) | |
---|---|---|---|
GVI | NDVI | ||
200 m | Residential | 0.0077 (0.0011,0.0143) a | 0.0043 (−0.0002,0.0087) b |
Industrial | 0.0047 (−0.0175,0.0269) | 0.0054 (−0.0102,0.0209) | |
Commercial Facility | −0.0001 (−0.0065,0.0062) | 0.0037 (−0.0002,0.0076) b | |
Public Service Facility | 0.0032 (−0.0038,0.0103) | 0.0075 (0.0027,0.0124) a | |
Green Square | 0.0119 (0.0017,0.0222) a | 0.0022 (−0.0055,0.0099) | |
Road Traffic | 0.0126 (−0.0001,0.0252) b | 0.002 (−0.0068,0.0109) | |
500 m | |||
Residential | 0.0094 (0,0.0187) a | 0.0034 (−0.0006,0.0073) b | |
Industrial | −0.0029 (−0.0325,0.0267) | 0.0028 (−0.0108,0.0164) | |
Commercial Facility | 0.007 (−0.0015,0.0154) | 0.0003 (−0.0035,0.0041) | |
Public Service Facility | 0.0141 (0.0042,0.0239) a | 0.0019 (−0.0023,0.0062) | |
Green Square | 0.0239 (0.0093,0.0386) a | −0.0011 (−0.0091,0.0069) | |
Road Traffic | 0.0205 (0.0027,0.0384) a | −0.0006 (−0.0093,0.0081) | |
1000 m | |||
Residential | 0.0143 (0.0029,0.0256) a | 0.0005 (−0.0029,0.0039) | |
Industrial | 0.0055 (−0.0425,0.0315) | −0.0006 (−0.0123,0.011) | |
Commercial Facility | 0.0117 (0.0016,0.0217) a | −0.0007 (−0.0044,0.003) | |
Public Service Facility | 0.0226 (0.0108,0.0343) a | −0.0008 (−0.0048,0.0033) | |
Green Square | 0.029 (0.011,0.0469) a | −0.0022 (−0.0105,0.0061) | |
Road Traffic | 0.0333 (0.0117,0.0548) a | −0.0042 (−0.0118,0.0034) |
References
- Zhou, Y.; Varquez, A.C.G.; Kanda, M. High-Resolution Global Urban Growth Projection Based on Multiple Applications of the SLEUTH Urban Growth Model. Sci. Data 2019, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban Expansion Dynamics and Natural Habitat Loss in China: A Multiscale Landscape Perspective. Glob. Change Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Jamalishahni, T.; Turrell, G.; Foster, S.; Davern, M.; Villanueva, K. Neighbourhood Socio-Economic Disadvantage and Loneliness: The Contribution of Green Space Quantity and Quality. BMC Public Health 2023, 23, 598. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, N.; Yang, F.; Yan, W.; Zhang, B.; Liu, X.; Peng, K.; Guo, J. Determinants of Depressive Symptoms at Individual, School and Province Levels: A National Survey of 398,520 Chinese Children and Adolescents. Public Health 2024, 229, 33–41. [Google Scholar] [CrossRef] [PubMed]
- McMahan, E.A.; Estes, D. The Effect of Contact with Natural Environments on Positive and Negative Affect: A Meta-Analysis. J. Posit. Psychol. 2015, 10, 507–519. [Google Scholar] [CrossRef]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and Mental Health: An Ecosystem Service Perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.; Grekousis, G.; Liu, Y.; Yuan, Y.; Li, Z. Neighbourhood Greenness and Mental Wellbeing in Guangzhou, China: What Are the Pathways? Landsc. Urban Plan. 2019, 190, 103602. [Google Scholar] [CrossRef]
- Zhu, H.; Nan, X.; Yang, F.; Bao, Z. Utilizing the Green View Index to Improve the Urban Street Greenery Index System: A Statistical Study Using Road Patterns and Vegetation Structures as Entry Points. Landsc. Urban Plan. 2023, 237, 104780. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, F.; Bao, Z.; Nan, X. A Study on the Impact of Visible Green Index and Vegetation Structures on Brain Wave Change in Residential Landscape. Urban For. Urban Green. 2021, 64, 127299. [Google Scholar] [CrossRef]
- Wang, R.; Yang, B.; Yao, Y.; Bloom, M.S.; Feng, Z.; Yuan, Y.; Zhang, J.; Liu, P.; Wu, W.; Lu, Y.; et al. Residential Greenness, Air Pollution and Psychological Well-Being among Urban Residents in Guangzhou, China. Sci. Total Environ. 2020, 711, 134843. [Google Scholar] [CrossRef]
- Duan, S.; Shen, Z.; Luo, X. Exploring the Relationship between Urban Youth Sentiment and the Built Environment Using Machine Learning and Weibo Comments. Int. J. Environ. Res. Public Health 2022, 19, 4794. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wood, S.A.; Lawler, J.J. The Relationship between Natural Environments and Subjective Well-Being as Measured by Sentiment Expressed on Twitter. Landsc. Urban Plan. 2022, 227, 104539. [Google Scholar] [CrossRef]
- Hirons, M.; Comberti, C.; Dunford, R. Valuing Cultural Ecosystem Services. Annu. Rev. Environ. Resour. 2016, 41, 545–574. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress Recovery during Exposure to Natural and Urban Environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Kaplan, S. The Restorative Benefits of Nature: Toward an Integrative Framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Gladwell, V.F.; Brown, D.K.; Wood, C.; Sandercock, G.R.; Barton, J.L. The Great Outdoors: How a Green Exercise Environment Can Benefit All. Extrem. Physiol. Med. 2013, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Van Dillen, S.M.E.; Verheij, R.A.; Groenewegen, P.P. Social Contacts as a Possible Mechanism behind the Relation between Green Space and Health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef]
- Dadvand, P.; de Nazelle, A.; Triguero-Mas, M.; Schembari, A.; Cirach, M.; Amoly, E.; Figueras, F.; Basagaña, X.; Ostro, B.; Nieuwenhuijsen, M. Surrounding Greenness and Exposure to Air Pollution During Pregnancy: An Analysis of Personal Monitoring Data. Environ. Health Perspect. 2012, 120, 1286–1290. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.J.; Lu, Y. Who Has Access to Urban Vegetation? A Spatial Analysis of Distributional Green Equity in 10 US Cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
- Fernandes, A.; Krog, N.H.; McEachan, R.; Nieuwenhuijsen, M.; Julvez, J.; Márquez, S.; De Castro, M.; Urquiza, J.; Heude, B.; Vafeiadi, M.; et al. Availability, Accessibility, and Use of Green Spaces and Cognitive Development in Primary School Children. Environ. Pollut. 2023, 334, 122143. [Google Scholar] [CrossRef]
- Xu, T.; Nordin, N.A.; Aini, A.M. Urban Green Space and Subjective Well-Being of Older People: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 14227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, W.; Khurshid, A. The Interplay of Migrant Workers’ Working Hours, Income, and Well-Being in China. Sustainability 2023, 15, 11409. [Google Scholar] [CrossRef]
- Alves, L.; Silva, S.; Severo, M.; Costa, D.; Pina, M.F.; Barros, H.; Azevedo, A. Association between Neighborhood Deprivation and Fruits and Vegetables Consumption and Leisure-Time Physical Activity: A Cross-Sectional Multilevel Analysis. BMC Public Health 2013, 13, 1103. [Google Scholar] [CrossRef] [PubMed]
- Brindley, P.; Cameron, R.W.; Ersoy, E.; Jorgensen, A.; Maheswaran, R. Is More Always Better? Exploring Field Survey and Social Media Indicators of Quality of Urban Greenspace, in Relation to Health. Urban For. Urban Green. 2019, 39, 45–54. [Google Scholar] [CrossRef]
- Kovacs-Györi, A.; Ristea, A.; Kolcsar, R.; Resch, B.; Crivellari, A.; Blaschke, T. Beyond Spatial Proximity—Classifying Parks and Their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data. ISPRS Int. J. Geo-Inf. 2018, 7, 378. [Google Scholar] [CrossRef]
- Lusseau, D.; Baillie, R. Disparities in Greenspace Access during COVID-19 Mobility Restrictions. Environ. Res. 2023, 225, 115551. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Pan, X.; Wang, Y.; Guo, X.; Wu, J. How Do Different Types and Landscape Attributes of Urban Parks Affect Visitors’ Positive Emotions? Landsc. Urban Plan. 2022, 226, 104482. [Google Scholar] [CrossRef]
- Plunz, R.A.; Zhou, Y.; Carrasco Vintimilla, M.I.; Mckeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter Sentiment in New York City Parks as Measure of Well-Being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Sun, P.; Lu, W.; Jin, L. How the Natural Environment in Downtown Neighborhood Affects Physical Activity and Sentiment: Using Social Media Data and Machine Learning. Health Place 2023, 79, 102968. [Google Scholar] [CrossRef]
- De Vries, S.; Nieuwenhuizen, W.; Farjon, H.; Van Hinsberg, A.; Dirkx, J. In Which Natural Environments Are People Happiest? Large-Scale Experience Sampling in the Netherlands. Landsc. Urban Plan. 2021, 205, 103972. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, M.; Zhang, R.; Zhang, B. Quantifying Emotional Differences in Urban Green Spaces Extracted from Photos on Social Networking Sites: A Study of 34 Parks in Three Cities in Northern China. Urban For. Urban Green. 2021, 62, 127133. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air Pollution Lowers Chinese Urbanites’ Expressed Happiness on Social Media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Hartig, T.; Tilov, B.; Atanasova, V.; Makakova, D.R.; Dimitrova, D.D. Residential Greenspace Is Associated with Mental Health via Intertwined Capacity-Building and Capacity-Restoring Pathways. Environ. Res. 2019, 178, 108708. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, Z.; Yuan, Z.; Liu, P.; Bie, Y.; Zhang, J.; Wang, R.; Wang, J.; Guan, Q. A Human-Machine Adversarial Scoring Framework for Urban Perception Assessment Using Street-View Images. Int. J. Geogr. Inf. Sci. 2019, 33, 2363–2384. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, Z.; Xu, C.; Manoli, G.; Ren, X.; Zhang, J.; Liu, Y.; Yin, R.; Zhao, B.; Vejre, H. Climatic and Economic Background Determine the Disparities in Urbanites’ Expressed Happiness during the Summer Heat. Environ. Sci. Technol. 2023, 57, 10951–10961. [Google Scholar] [CrossRef]
- Du, S.; Zhang, F.; Zhang, X. Semantic Classification of Urban Buildings Combining VHR Image and GIS Data: An Improved Random Forest Approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying Urban Land Use by Integrating Remote Sensing and Social Media Data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Miao, R.; Wang, Y.; Li, S. Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yang, R.; Xiao, X.; Xia, J. Contribution of Urban Functional Zones to the Spatial Distribution of Urban Thermal Environment. Build. Environ. 2022, 216, 109000. [Google Scholar] [CrossRef]
- Qiao, Y.; Labi, S.; Fricker, J.D. Does Highway Project Bundling Policy Affect Bidding Competition? Insights from a Mixed Ordinal Logistic Model. Transp. Res. Part Policy Pract. 2021, 145, 228–242. [Google Scholar] [CrossRef]
- Mannering, F.L.; Bhat, C.R. Analytic Methods in Accident Research: Methodological Frontier and Future Directions. Anal. Methods Accid. Res. 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Helbich, M. Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures: Exploring a Time Series of the Normalized Difference Vegetation Indices. Int. J. Environ. Res. Public Health 2019, 16, 852. [Google Scholar] [CrossRef] [PubMed]
- Crouse, D.L.; Pinault, L.; Christidis, T.; Lavigne, E.; Thomson, E.M.; Villeneuve, P.J. Residential Greenness and Indicators of Stress and Mental Well-Being in a Canadian National-Level Survey. Environ. Res. 2021, 192, 110267. [Google Scholar] [CrossRef] [PubMed]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Wijga, A.H.; Van Den Brink, C.; Brunekreef, B.; Lebret, E.; Gehring, U.; Janssen, N.A.H. Associations of Combined Exposures to Surrounding Green, Air Pollution and Traffic Noise on Mental Health. Environ. Int. 2019, 129, 525–537. [Google Scholar] [CrossRef]
- Li, F.; Yao, N.; Liu, D.; Liu, W.; Sun, Y.; Cheng, W.; Li, X.; Wang, X.; Zhao, Y. Explore the Recreational Service of Large Urban Parks and Its Influential Factors in City Clusters—Experiments from 11 Cities in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2021, 314, 128261. [Google Scholar] [CrossRef]
- Wang, R.; Browning, M.H.E.M.; Kee, F.; Hunter, R.F. Exploring Mechanistic Pathways Linking Urban Green and Blue Space to Mental Wellbeing before and after Urban Regeneration of a Greenway: Evidence from the Connswater Community Greenway, Belfast, UK. Landsc. Urban Plan. 2023, 235, 104739. [Google Scholar] [CrossRef]
- Yang, H.; Wen, J.; Lu, Y.; Peng, Q. A Quasi-Experimental Study on the Impact of Park Accessibility on the Mental Health of Undergraduate Students. Urban For. Urban Green. 2023, 86, 127979. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the Effects of Green View Index of Neighborhood Streets on Walking Time Using Google Street View and Deep Learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Yang, B.; Ta, W.; Dong, W.; Ma, D.; Duan, J.; Lin, H.; Dong, D.; Chen, J.; Zeng, S.; Shi, Y.; et al. Quantifying the Threshold Effects and Factors Impacting Physiological Health Benefits of Forest Exposure. Forests 2024, 15, 555. [Google Scholar] [CrossRef]
- Costa-Cordella, S.; Vivanco-Carlevari, A.; Rossi, A.; Arévalo-Romero, C.; Silva, J.R. Social Support and Depressive Symptoms in the Context of COVID-19 Lockdown: The Moderating Role of Attachment Styles. Int. J. Public Health 2022, 67, 1604401. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Ma, L. Depression and Cardiovascular Disease in Elderly: Current Understanding. J. Clin. Neurosci. 2018, 47, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Zuo, L.; Xiong, P.; Chen, L.; Liang, X.; Jing, C. Associations of PM2.5 and Road Traffic Noise with Mental Health: Evidence from UK Biobank. Environ. Res. 2022, 207, 112221. [Google Scholar] [CrossRef]
- Okokon, E.O.; Yli-Tuomi, T.; Turunen, A.W.; Tiittanen, P.; Juutilainen, J.; Lanki, T. Traffic Noise, Noise Annoyance and Psychotropic Medication Use. Environ. Int. 2018, 119, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Rugel, E.J.; Carpiano, R.M.; Henderson, S.B.; Brauer, M. Exposure to Natural Space, Sense of Community Belonging, and Adverse Mental Health Outcomes across an Urban Region. Environ. Res. 2019, 171, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, F.; Yu, Z.; Guo, F.; Wang, J.; Jin, M.; Shui, L.; Lin, H.; Tang, M.; Chen, K. Association of Residential Greenness and Incident Depression: Investigating the Mediation and Interaction Effects of Particulate Matter. Sci. Total Environ. 2022, 811, 152372. [Google Scholar] [CrossRef]
- Aerts, R.; Stas, M.; Vanlessen, N.; Hendrickx, M.; Bruffaerts, N.; Hoebeke, L.; Dendoncker, N.; Dujardin, S.; Saenen, N.D.; Van Nieuwenhuyse, A.; et al. Residential Green Space and Seasonal Distress in a Cohort of Tree Pollen Allergy Patients. Int. J. Hyg. Environ. Health 2020, 223, 71–79. [Google Scholar] [CrossRef]
- Yan, J.; Chen, W.Y.; Zhang, Z.; Zhao, W.; Liu, M.; Yin, S. Mitigating PM2.5 Exposure with Vegetation Barrier and Building Designs in Urban Open-Road Environments Based on Numerical Simulations. Landsc. Urban Plan. 2024, 241, 104918. [Google Scholar] [CrossRef]
- Hao, N.; Li, X.; Han, D.; Nie, W. Quantifying the Impact of Street Greening during Full-Leaf Seasons on Emotional Perception: Guidelines for Resident Well-Being. Forests. 2024, 15, 119. [Google Scholar] [CrossRef]
- Zhu, H.; Nan, X.; Kang, N.; Li, S. How Much Visual Greenery Can Street Trees Generate from a Humanistic Perspective? An Attempt to Quantify the Canopy Green View Index Based on Tree Morphology. Forests 2024, 15, 88. [Google Scholar] [CrossRef]
Characteristics | Coefficient (95% CI) | |||
---|---|---|---|---|
200 m | 500 m | 1000 m | ||
Greening index | GVI 200 m (per 0.01 change) | 0.0052 (0.0018, 0.0086) a | 0.0116 (0.0069, 0.0163) a | 0.0178 (0.0122, 0.0234) a |
NDVI 200 m (per 0.01 change) | 0.0044 (0.0021, 0.0067) a | 0.0015 (−0.0006, 0.0036) | −0.0006 (−0.0026, 0.0013) | |
POI type | Residential (base) | |||
Industrial | 0.3046 (0.1646, 0.4446) a | 0.2977 (0.1579, 0.4376) a | 0.294 (0.1544, 0.4337) a | |
Commercial Facility | 0.5187 (0.4594, 0.578) a | 0.5037 (0.4442, 0.5632) a | 0.499 (0.4395, 0.5585) a | |
Public Service Facility | 0.3812 (0.3145, 0.4479) a | 0.3738 (0.3071, 0.4406) a | 0.3711 (0.3044, 0.4378) a | |
Green Square | 0.7244 (0.5903, 0.8585) a | 0.7242 (0.5902, 0.8582) a | 0.7187 (0.5849, 0.8524) a | |
Road Traffic | 0.2353 (0.1304, 0.3402) a | 0.2318 (0.127, 0.3366) a | 0.2283 (0.1235, 0.333) a | |
Dew point (°C) | ≤2 (base) | |||
2–<16 | −0.0799 (−0.1663, 0.0065) b | −0.0801 (−0.1664, 0.0063) b | −0.0797 (−0.1661, 0.0067) b | |
16+ | −0.0953 (−0.203, 0.0124) b | −0.0961 (−0.2038, 0.0116) b | −0.0954 (−0.2032, 0.0123) b | |
PM2.5 (μg/m3) | ≤35 (base) | |||
35–<75 | 0.0134 (−0.03, 0.0568) | 0.014 (−0.0294, 0.0574) | 0.0139 (−0.0295, 0.0573) | |
75–<115 | −0.1342 (−0.2596, −0.0088) a | −0.1332 (−0.2586, −0.0078)a | −0.1331 (−0.2584, −0.0077)a | |
115–<150 | −0.3167 (−0.634, 0.0007) b | −0.313 (−0.6304, 0.0044) b | −0.315 (−0.6322, 0.0023) b | |
150+ | −0.2698 (−0.9959, 0.4564) | −0.2715 (−0.9977, 0.4548) | −0.2667 (−0.9929, 0.4595) | |
Temperature (°C) | <0 (base) | |||
0–<7 | 0.0629 (−0.1583, 0.2842) | 0.0647 (−0.1565, 0.2859) | 0.0645 (−0.1567, 0.2857) | |
7–<12 | 0.1661 (−0.0629, 0.3952) | 0.1673 (−0.0617, 0.3963) | 0.1671 (−0.0618, 0.3961) | |
12–<18 | 0.1907 (−0.0405, 0.4219) | 0.1921 (−0.0391, 0.4232) | 0.1921 (−0.039, 0.4233) | |
18–<26 | 0.1705 (−0.0648, 0.4058) | 0.1724 (−0.0628, 0.4077) | 0.172 (−0.0632, 0.4072) | |
26+ | 0.1446 (−0.094, 0.3832) | 0.1462 (−0.0924, 0.3847) | 0.1454 (−0.0931, 0.384) | |
Rain | No (base) | |||
Yes | 0.0221 (−0.0401, 0.0843) | 0.0225 (−0.0398, 0.0847) | 0.0225 (−0.0397, 0.0847) | |
Day | No (base) | |||
Yes | 0.0375 (0.0042, 0.0708) a | 0.037 (0.0038, 0.0703) a | 0.0371 (0.0039, 0.0704) a | |
Day of week | Weekend (base) | |||
Weekday | −0.0226 (−0.0573, 0.0121) | −0.0221 (−0.0569, 0.0126) | −0.022 (−0.0567, 0.0127) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, L.; Wang, J.; Dong, D.; Jiang, T.; Chen, J.; Ren, Y. Exploring the Relationship between the Sentiments of Young People and Urban Green Space by Using a Check-In Microblog. Forests 2024, 15, 796. https://doi.org/10.3390/f15050796
Zhang J, Liu L, Wang J, Dong D, Jiang T, Chen J, Ren Y. Exploring the Relationship between the Sentiments of Young People and Urban Green Space by Using a Check-In Microblog. Forests. 2024; 15(5):796. https://doi.org/10.3390/f15050796
Chicago/Turabian StyleZhang, Jing, Liwen Liu, Jianwu Wang, Dubing Dong, Ting Jiang, Jian Chen, and Yuan Ren. 2024. "Exploring the Relationship between the Sentiments of Young People and Urban Green Space by Using a Check-In Microblog" Forests 15, no. 5: 796. https://doi.org/10.3390/f15050796
APA StyleZhang, J., Liu, L., Wang, J., Dong, D., Jiang, T., Chen, J., & Ren, Y. (2024). Exploring the Relationship between the Sentiments of Young People and Urban Green Space by Using a Check-In Microblog. Forests, 15(5), 796. https://doi.org/10.3390/f15050796