Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Meteorological Data
2.3. Leaf Area Index
2.4. Litterfall and Leaf Growth
2.5. Net Ecosystem Exchange of H2O and CO2: Observation
2.6. Net Ecosystem Exchange of H2O and CO2: Modeling
3. Results
3.1. Response of LAI to Environmental Drivers
3.2. Seasonality of Weather, Canopy Properties, and Ecosystem Fluxes
3.3. Effects of Varying versus Constant LAI
4. Discussion
4.1. LAI Responses to Environmental Drivers
4.2. Seasonality of Weather, Canopy Properties, and Ecosystem Fluxes
4.3. Effects of Varying versus Constant LAI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
α | kn | g1 | γ | Vcmax | |
---|---|---|---|---|---|
α | 1 | −0.12 | −0.54 | 4.453 × 10−3 | 0.29 |
kn | −0.12 | 1 | 0.34 | 0.11 | 0.58 |
g1 | −0.54 | 0.34 | 1 | 0.26 | −0.32 |
γ | 4.45 × 10−3 | 0.11 | 0.26 | 1 | 0.12 |
Vcmax_scalar | 0.29 | 0.58 | −0.32 | 0.12 | 1 |
References
- Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 0080546080. [Google Scholar]
- Launiainen, S. Seasonal and Inter-Annual Variability of Energy Exchange above a Boreal Scots Pine Forest. Biogeosciences 2010, 7, 3921–3940. [Google Scholar] [CrossRef]
- Stünzi, S.M. Energy and Water Exchange Processes in Boreal Permafrost Ecosystems. Ph.D. Thesis, Humboldt Universitaet, Berlin, Germany, 2021. [Google Scholar]
- Liu, M.; He, H.; Ren, X.; Sun, X.; Yu, G.; Han, S.; Wang, H.; Zhou, G. The Effects of Constraining Variables on Parameter Optimization in Carbon and Water Flux Modeling over Different Forest Ecosystems. Ecol. Model. 2015, 303, 30–41. [Google Scholar] [CrossRef]
- Hu, Z.; Piao, S.; Knapp, A.K.; Wang, X.; Peng, S.; Yuan, W.; Running, S.; Mao, J.; Shi, X.; Ciais, P. Decoupling of Greenness and Gross Primary Productivity as Aridity Decreases. Remote Sens. Environ. 2022, 279, 113120. [Google Scholar] [CrossRef]
- Antonarakis, A.S.; Munger, J.W.; Moorcroft, P.R. Imaging Spectroscopy-and Lidar-derived Estimates of Canopy Composition and Structure to Improve Predictions of Forest Carbon Fluxes and Ecosystem Dynamics. Geophys. Res. Lett. 2014, 41, 2535–2542. [Google Scholar] [CrossRef]
- Kala, J.; Decker, M.; Exbrayat, J.-F.; Pitman, A.J.; Carouge, C.; Evans, J.P.; Abramowitz, G.; Mocko, D. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes. J. Hydrometeorol. 2014, 15, 489–503. [Google Scholar] [CrossRef]
- Shen, C.; Niu, J.; Phanikumar, M.S. Evaluating Controls on Coupled Hydrologic and Vegetation Dynamics in a Humid Continental Climate Watershed Using a Subsurface-land Surface Processes Model. Water Resour. Res. 2013, 49, 2552–2572. [Google Scholar] [CrossRef]
- Kim, Y.; Knox, R.G.; Longo, M.; Medvigy, D.; Hutyra, L.R.; Pyle, E.H.; Wofsy, S.C.; Bras, R.L.; Moorcroft, P.R. Seasonal Carbon Dynamics and Water Fluxes in an a Mazon Rainforest. Glob. Chang. Biol. 2012, 18, 1322–1334. [Google Scholar] [CrossRef]
- Thom, D.; Rammer, W.; Seidl, R. The Impact of Future Forest Dynamics on Climate: Interactive Effects of Changing Vegetation and Disturbance Regimes. Ecol. Monogr. 2017, 87, 665–684. [Google Scholar] [CrossRef]
- Liu, N.; Harper, R.J.; Dell, B.; Liu, S.; Yu, Z. Vegetation Dynamics and Rainfall Sensitivity for Different Vegetation Types of the Australian Continent in the Dry Period 2002–2010. Ecohydrology 2017, 10, e1811. [Google Scholar] [CrossRef]
- Garonna, I.; De Jong, R.; De Wit, A.J.; Mücher, C.A.; Schmid, B.; Schaepman, M.E. Strong Contribution of Autumn Phenology to Changes in Satellite-derived Growing Season Length Estimates across Europe (1982–2011). Glob. Chang. Biol. 2014, 20, 3457–3470. [Google Scholar] [CrossRef]
- Reyes-Fox, M.; Steltzer, H.; Trlica, M.; McMaster, G.S.; Andales, A.A.; LeCain, D.R.; Morgan, J.A. Elevated CO2 Further Lengthens Growing Season under Warming Conditions. Nature 2014, 510, 259. [Google Scholar] [CrossRef]
- White, M.; Running, S.W.; Thornton, P.E. The Impact of Growing-Season Length Variability on Carbon Assimilation and Evapotranspiration over 88 Years in the Eastern US Deciduous Forest. Int. J. Biometeorol. 1999, 42, 139–145. [Google Scholar] [CrossRef]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Desai, A.R. Terrestrial Biosphere Models Need Better Representation of Vegetation Phenology: Results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef]
- Tang, X.; Wang, X.; Wang, Z.; Liu, D.; Jia, M.; Dong, Z.; Liu, X. Influence of Vegetation Phenology on Modelling Carbon Fluxes in Temperate Deciduous Forest by Exclusive Use of MODIS Time-Series Data. Int. J. Remote Sens. 2013, 34, 8373–8392. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Rödenbeck, C.; Keeling, R.; Heimann, M.; Thonicke, K.; Reichstein, M. Enhanced Seasonal CO2 Exchange Caused by Amplified Plant Productivity in Northern Ecosystems. Science 2016, 351, 696–699. [Google Scholar] [CrossRef]
- Zeng, N.; Zhao, F.; Collatz, G.J.; Kalnay, E.; Salawitch, R.J.; West, T.O.; Guanter, L. Agricultural Green Revolution as a Driver of Increasing Atmospheric CO2 Seasonal Amplitude. Nature 2014, 515, 394–397. [Google Scholar] [CrossRef]
- Barichivich, J.; Briffa, K.R.; Myneni, R.B.; Osborn, T.J.; Melvin, T.M.; Ciais, P.; Piao, S.; Tucker, C. Large-scale Variations in the Vegetation Growing Season and Annual Cycle of Atmospheric CO2 at High Northern Latitudes from 1950 to 2011. Glob. Chang. Biol. 2013, 19, 3167–3183. [Google Scholar] [CrossRef]
- Zhao, F.; Zeng, N. Continued Increase in Atmospheric CO2 Seasonal Amplitude in the 21st Century Projected by the CMIP5 Earth System Models. Earth Syst. Dyn. 2014, 5, 423–439. [Google Scholar] [CrossRef]
- Moore, C.E.; Keenan, T.F.; Duursma, R.A.; Dijk, A.I.; Hutley, L.B.; Taylor, J.R.; Liddell, M.J. Reviews and Syntheses: Australian Vegetation Phenology: New Insights from Satellite Remote Sensing and Digital Repeat Photography. Biogeosciences 2016, 13, 5085. [Google Scholar] [CrossRef]
- Duarte, H.F.; Raczka, B.M.; Ricciuto, D.M.; Lin, J.C.; Koven, C.D.; Thornton, P.E.; Bowling, D.R.; Lai, C.-T.; Bible, K.J.; Ehleringer, J.R. Evaluating the Community Land Model (CLM4.5) at a Coniferous Forest Site in Northwestern United States Using Flux and Carbon-Isotope Measurements. Biogeosciences 2017, 14, 4315–4340. [Google Scholar] [CrossRef]
- Caldararu, S.; Purves, D.W.; Palmer, P.I. Phenology as a Strategy for Carbon Optimality: A Global Model. Biogeosciences 2014, 11, 763–778. [Google Scholar] [CrossRef]
- Restrepo-Coupe, N.; Huete, A.; Davies, K.; Cleverly, J.; Beringer, J.; Eamus, D.; Meyer, W.S. MODIS Vegetation Products as Proxies of Photosynthetic Potential along a Gradient of Meteorologically and Biologically Driven Ecosystem Productivity. Biogeosciences 2016, 13, 5587–5608. [Google Scholar] [CrossRef]
- Wu, J.; Albert, L.P.; Lopes, A.P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K.T.; Saleska, S.R. Leaf Development and Demography Explain Photosynthetic Seasonality in Amazon Evergreen Forests. Science 2016, 351, 972–976. [Google Scholar] [CrossRef]
- Wu, J.; Guan, K.; Hayek, M.; Restrepo-Coupe, N.; Wiedemann, K.T.; Xu, X.; Silva, R. Partitioning Controls on Amazon Forest Photosynthesis between Environmental and Biotic Factors at Hourly to Interannual Timescales. Glob. Chang. Biol. 2017, 23, 1240–1257. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Zhang, Z.; Ollinger, S.V.; Hollinger, D.Y.; Pan, Y.; Wan, J. Canopy Photosynthetic Capacity Drives Contrasting Age Dynamics of Resource Use Efficiencies between Mature Temperate Evergreen and Deciduous Forests. Glob. Chang. Biol. 2020, 26, 6156–6167. [Google Scholar] [CrossRef]
- Duursma, R.A.; Gimeno, T.E.; Boer, M.M.; Crous, K.Y.; Tjoelker, M.G.; Ellsworth, D.S. Canopy Leaf Area of a Mature Evergreen Eucalyptus Woodland Does Not Respond to Elevated Atmospheric CO2 but Tracks Water Availability. Glob. Chang. Biol. 2016, 22, 1666–1676. [Google Scholar] [CrossRef]
- Griebel, A.; Metzen, D.; Pendall, E.; Nolan, R.H.; Clarke, H.; Renchon, A.A.; Boer, M.M. Recovery from Severe Mistletoe Infection after Heat- and Drought-Induced Mistletoe Death. Ecosystems 2022, 25, 1–16. [Google Scholar] [CrossRef]
- Restrepo-Coupe, N.; da Rocha, H.R.; Hutyra, L.R.; da Araujo, A.C.; Borma, L.S.; Christoffersen, B.; Cabral, O.M.R.; de Camargo, P.B.; Cardoso, F.L.; da Costa, A.C.L. What Drives the Seasonality of Photosynthesis across the Amazon Basin? A Cross-Site Analysis of Eddy Flux Tower Measurements from the Brasil Flux Network. Agric. For. Meteorol. 2013, 182, 128–144. [Google Scholar] [CrossRef]
- Albert, L.P.; Wu, J.; Prohaska, N.; de Camargo, P.B.; Huxman, T.E.; Tribuzy, E.S.; Ivanov, V.Y.; Oliveira, R.S.; Garcia, S.; Smith, M.N. Age-Dependent Leaf Physiology and Consequences for Crown-Scale Carbon Uptake during the Dry Season in an Amazon Evergreen Forest. New Phytol. 2018, 219, 870–884. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Y.; Robinson, D. Allocation of Gross Primary Production in Forest Ecosystems: Allometric Constraints and Environmental Responses. New Phytol. 2013, 200, 1176–1186. [Google Scholar] [CrossRef]
- Malhi, Y.; Doughty, C.; Galbraith, D. The Allocation of Ecosystem Net Primary Productivity in Tropical Forests. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3225–3245. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Poulter, B.; Frank, D.C. A Wood Biology Agenda to Support Global Vegetation Modelling. Trends Plant Sci. 2018, 23, 1006–1015. [Google Scholar] [CrossRef]
- Walker, A.P.; Hanson, P.J.; De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Asao, S.; Iversen, C.M. Comprehensive Ecosystem Model-data Synthesis Using Multiple Data Sets at Two Temperate Forest Free-air CO2 Enrichment Experiments: Model Performance at Ambient CO2 Concentration. J. Geophys. Res. Biogeosci. 2014, 119, 937–964. [Google Scholar] [CrossRef]
- Franklin, O.; Johansson, J.; Dewar, R.C.; Dieckmann, U.; McMurtrie, R.E.; Brännström, Å.; Dybzinski, R. Modeling Carbon Allocation in Trees: A Search for Principles. Tree Physiol. 2012, 32, 648–666. [Google Scholar] [CrossRef]
- Sainte-Marie, J.; Saint-André, L.; Nouvellon, Y.; Laclau, J.-P.; Roupsard, O.; Le Maire, G.; Delpierre, N.; Henrot, A.; Barrandon, M. A New Probabilistic Canopy Dynamics Model (SLCD) That Is Suitable for Evergreen and Deciduous Forest Ecosystems. Ecol. Model. 2014, 290, 121–133. [Google Scholar] [CrossRef]
- Pierce, M.; Raschke, K. Correlation between Loss of Turgor and Accumulation of Abscisic Acid in Detached Leaves. Planta 1980, 148, 174–182. [Google Scholar] [CrossRef]
- Reich, P.; Uhl, C.; Walters, M.; Ellsworth, D. Leaf Lifespan as a Determinant of Leaf Structure and Function among 23 Amazonian Tree Species. Oecologia 1991, 86, 16–24. [Google Scholar] [CrossRef]
- Macfarlane, C.; Ryu, Y.; Ogden, G.N.; Sonnentag, O. Digital Canopy Photography: Exposed and in the Raw. Agric. For. Meteorol. 2014, 197, 244–253. [Google Scholar] [CrossRef]
- Ovakoglou, G.; Alexandridis, T.K.; Clevers, J.G.P.W.; Gitas, I.Z. Downscaling of MODIS Leaf Area Index Using Landsat Vegetation Index. Geocarto Int. 2022, 37, 2466–2489. [Google Scholar] [CrossRef]
- Kang, Y.; Özdoğan, M.; Zipper, S.C.; Román, M.O.; Walker, J.; Hong, S.Y.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef]
- Guindin-Garcia, N.; Gitelson, A.A.; Arkebauer, T.J.; Shanahan, J.; Weiss, A. An Evaluation of MODIS 8-and 16-Day Composite Products for Monitoring Maize Green Leaf Area Index. Agric. For. Meteorol. 2012, 161, 15–25. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Liu, Q.; Zhong, B.; Wu, S.; Xia, C. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index. Sensors 2017, 17, 1982. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Restrepo-Coupe, N.; Ratana, P.; Didan, K.; Saleska, S.; Ichii, K.; Gamo, M. Multiple Site Tower Flux and Remote Sensing Comparisons of Tropical Forest Dynamics in Monsoon Asia. Agric. For. Meteorol. 2008, 148, 748–760. [Google Scholar] [CrossRef]
- Maeda, E.E.; Heiskanen, J.; Aragão, L.E.; Rinne, J. Can MODIS EVI Monitor Ecosystem Productivity in the Amazon Rainforest? Geophys. Res. Lett. 2014, 41, 7176–7183. [Google Scholar] [CrossRef]
- Olofsson, P.; Lagergren, F.; Lindroth, A.; Lindström, J.; Klemedtsson, L.; Kutsch, W.; Eklundh, L. Towards Operational Remote Sensing of Forest Carbon Balance across Northern Europe. Biogeosciences 2008, 5, 817–832. [Google Scholar] [CrossRef]
- Shi, H.; Li, L.; Eamus, D.; Huete, A.; Cleverly, J.; Tian, X.; Magliulo, V. Assessing the Ability of MODIS EVI to Estimate Terrestrial Ecosystem Gross Primary Production of Multiple Land Cover Types. Ecol. Indic. 2017, 72, 153–164. [Google Scholar] [CrossRef]
- Renchon, A.A.; Griebel, A.; Metzen, D.; Williams, C.A.; Medlyn, B.; Duursma, R.A.; Barton, C.V.M.; Maier, C.; Boer, M.M.; Isaac, P.; et al. Upside-down Fluxes Down Under: CO2 Net Sink in Winter and Net Source in Summer in a Temperate Evergreen Broadleaf Forest. Biogeosciences 2018, 15, 3703–3716. [Google Scholar] [CrossRef]
- Grant, I.; Jones, D.; Wang, W.; Fawcett, R.; Barratt, D. Meteorological and Remotely Sensed Datasets for Hydrological Modelling: A Contribution to the Australian Water Availability Project; Australian Bureau of Meteorology: Canberra, Australia, 2008. [Google Scholar]
- Jones, D.A.; Wang, W.; Fawcett, R. High-Quality Spatial Climate Data-Sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233. [Google Scholar] [CrossRef]
- Haverd, V.; Smith, B.; Cook, G.D.; Briggs, P.R.; Nieradzik, L.; Roxburgh, S.H.; Liedloff, A.; Meyer, C.P.; Canadell, J.G. A Stand-Alone Tree Demography and Landscape Structure Module for Earth System Models. Geophys. Res. Lett. 2013, 40, 5234–5239. [Google Scholar] [CrossRef]
- Macfarlane, C.; Grigg, A.; Evangelista, C. Estimating Forest Leaf Area Using Cover and Fullframe Fisheye Photography: Thinking inside the Circle. Agric. For. Meteorol. 2007, 146, 1–12. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar]
- Foken, T.; Gockede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-Field Data Quality Control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Springer: Dordrecht, The Netherlands, 2004; Volume 29, pp. 181–208. [Google Scholar]
- Aubinet, M.; Chermanne, B.; Vandenhaute, M.; Longdoz, B.; Yernaux, M.; Laitat, E. Long Term Carbon Dioxide Exchange above a Mixed Forest in the Belgian Ardennes. Agric. For. Meteorol. 2001, 108, 293–315. [Google Scholar] [CrossRef]
- Isaac, P.; Cleverly, J.; McHugh, I.; Gorsel, E.; Ewenz, C.; Beringer, J. OzFlux Data: Network Integration from Collection to Curation. Biogeosciences 2017, 14, 2903. [Google Scholar] [CrossRef]
- Renchon, A.A.; Drake, J.E.; Macdonald, C.A.; Sihi, D.; Hinko-Najera, N.; Tjoelker, M.G.; Arndt, S.K.; Noh, N.J.; Davidson, E.; Pendall, E. Concurrent Measurements of Soil and Ecosystem Respiration in a Mature Eucalypt Woodland: Advantages, Lessons, and Questions. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006221. [Google Scholar] [CrossRef]
- Haverd, V.; Smith, B.; Nieradzik, L.; Briggs, P.R.; Woodgate, W.; Trudinger, C.M.; Canadell, J.G.; Cuntz, M. A New Version of the CABLE Land Surface Model (Subversion Revision R4601) Incorporating Land Use and Land Cover Change, Woody Vegetation Demography, and a Novel Optimisation-Based Approach to Plant Coordination of Photosynthesis. Geosci. Model Dev. 2018, 11, 2995–3026. [Google Scholar] [CrossRef]
- Farquhar, G.; Wong, S. An Empirical Model of Stomatal Conductance. Funct. Plant Biol. 1984, 11, 191–210. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Duursma, R.A.; Eamus, D.; Ellsworth, D.S.; Prentice, I.C.; Barton, C.V.M.; Crous, K.Y.; De Angelis, P.; Freeman, M.; Wingate, L. Reconciling the Optimal and Empirical Approaches to Modelling Stomatal Conductance. Glob. Chang. Biol. 2011, 17, 2134–2144. [Google Scholar] [CrossRef]
- Haverd, V.; Cuntz, M.; Nieradzik, L.P.; Harman, I.N. Improved Representations of Coupled Soil–Canopy Processes in the CABLE Land Surface Model (Subversion Revision 3432). Geosci. Model Dev. 2016, 9, 3111–3122. [Google Scholar] [CrossRef]
- Battaglia, M.; Sands, P. Modelling Site Productivity of Eucalyptus globulus in Response to Climatic and Site Factors. Funct. Plant Biol. 1997, 24, 831–850. [Google Scholar] [CrossRef]
- Martinez-Vilalta, J.; Sala, A.; Asensio, D.; Galiano, L.; Hoch, G.; Palacio, S.; Piper, F.I.; Lloret, F. Dynamics of Non-Structural Carbohydrates in Terrestrial Plants: A Global Synthesis. Ecol. Monogr. 2016, 86, 495–516. [Google Scholar] [CrossRef]
- Bach, C.S. Phenological Patterns in Monsoon Rainforests in the Northern Territory, Australia. Austral Ecol. 2002, 27, 477–489. [Google Scholar] [CrossRef]
- England, J.R.; Attiwill, P.M. Patterns of Growth and Nutrient Accumulation in Expanding Leaves of Eucalyptus regnans (Myrtaceae). Aust. J. Bot. 2008, 56, 44–50. [Google Scholar] [CrossRef]
- Griebel, A.; Bennett, L.T.; Arndt, S.K. Evergreen and Ever Growing–Stem and Canopy Growth Dynamics of a Temperate Eucalypt Forest. For. Ecol. Manag. 2017, 389, 417–426. [Google Scholar] [CrossRef]
- Griebel, A.; Bennett, L.T.; Culvenor, D.S.; Newnham, G.J.; Arndt, S.K. Reliability and Limitations of a Novel Terrestrial Laser Scanner for Daily Monitoring of Forest Canopy Dynamics. Remote Sens. Environ. 2015, 166, 205–213. [Google Scholar] [CrossRef]
- Pook, E. Canopy Dynamics of Eucalyptus maculata Hook. I. Distribution and Dynamics of Leaf Populations. Aust. J. Bot. 1984, 32, 387–403. [Google Scholar] [CrossRef]
- Pook, E.; Gill, A.; Moore, P. Long-Term Variation of Litter Fall, Canopy Leaf Area and Flowering in a Eucalyptus maculata Forest on the South Coast of New South Wales. Aust. J. Bot. 1997, 45, 737–755. [Google Scholar] [CrossRef]
- Williams, R.; Myers, B.; Muller, W.; Duff, G.; Eamus, D. Leaf Phenology of Woody Species in a North Australian Tropical Savanna. Ecology 1997, 78, 2542–2558. [Google Scholar] [CrossRef]
- Zeng, Z.; Piao, S.; Li, L.Z.X.; Zhou, L.; Ciais, P.; Wang, T.; Li, Y.; Lian, X.U.; Wood, E.F.; Friedlingstein, P. Climate Mitigation from Vegetation Biophysical Feedbacks during the Past Three Decades. Nat. Clim. Chang. 2017, 7, 432–436. [Google Scholar] [CrossRef]
- Hartmann, H.; Bahn, M.; Carbone, M.; Richardson, A.D. Plant Carbon Allocation in a Changing World–Challenges and Progress. New Phytol. 2020, 227, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Fatichi, S.; Pappas, C.; Zscheischler, J.; Leuzinger, S. Modelling Carbon Sources and Sinks in Terrestrial Vegetation. New Phytol. 2019, 221, 652–668. [Google Scholar] [CrossRef]
- Quillet, A.; Peng, C.; Garneau, M. Toward Dynamic Global Vegetation Models for Simulating Vegetation–Climate Interactions and Feedbacks: Recent Developments, Limitations, and Future Challenges. Environ. Rev. 2010, 18, 333–353. [Google Scholar] [CrossRef]
- Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B. Importance of Vegetation Dynamics for Future Terrestrial Carbon Cycling. Environ. Res. Lett. 2015, 10, 054019. [Google Scholar] [CrossRef]
- Cabon, A.; Kannenberg, S.A.; Arain, A.; Babst, F.; Baldocchi, D.; Belmecheri, S.; Delpierre, N.; Guerrieri, R.; Maxwell, J.T.; McKenzie, S. Cross-Biome Synthesis of Source versus Sink Limits to Tree Growth. Science 2022, 376, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, S.; Vico, G.; Thompson, S.; Beyer, F.; Weih, M. Contrasting Leaf Phenological Strategies Optimize Carbon Gain under Droughts of Different Duration. Adv. Water Resour. 2015, 84, 37–51. [Google Scholar] [CrossRef]
- Vico, G.; Thompson, S.E.; Manzoni, S.; Molini, A.; Albertson, J.D.; Almeida-Cortez, J.S.; Fay, P.A.; Feng, X.; Guswa, A.J.; Liu, H.; et al. Climatic, Ecophysiological, and Phenological Controls on Plant Ecohydrological Strategies in Seasonally Dry Ecosystems. Ecohydrology 2015, 8, 660–681. [Google Scholar] [CrossRef]
- Crous, K.Y.; Wujeska-Klause, A.; Jiang, M.; Medlyn, B.E.; Ellsworth, D.S. Nitrogen and Phosphorus Retranslocation of Leaves and Stemwood in a Mature Eucalyptus Forest Exposed to 5 Years of Elevated CO2. Front. Plant Sci. 2019, 10, 664. [Google Scholar] [CrossRef] [PubMed]
- Sabot, M.E.B.; De Kauwe, M.G.; Pitman, A.J.; Ellsworth, D.S.; Medlyn, B.E.; Caldararu, S.; Zaehle, S.; Crous, K.Y.; Gimeno, T.E.; Wujeska-Klause, A. Predicting Resilience through the Lens of Competing Adjustments to Vegetation Function. Plant Cell Environ. 2022, 45, 2744–2761. [Google Scholar] [CrossRef] [PubMed]
- Van Gorsel, E.; Wolf, S.; Cleverly, J.; Isaac, P.; Haverd, V.; Ewenz, C.; Evans, B.J. Carbon Uptake and Water Use in Woodlands and Forests in Southern Australia during an Extreme Heat Wave Event in the “Angry Summer” of 2012/2013. Biogeosciences 2016, 13, 5947–5964. [Google Scholar] [CrossRef]
- Hinko-Najera, N.; Isaac, P.; Beringer, J.; Gorsel, E.; Ewenz, C.M.; McHugh, I.; Arndt, S.K. Net Ecosystem Carbon Exchange of a Dry Temperate Eucalypt Forest. Biogeosciences 2017, 14, 3781–3800. [Google Scholar] [CrossRef]
- Keith, H.; Gorsel, E.; Jacobsen, K.L.; Cleugh, H.A. Dynamics of Carbon Exchange in a Eucalyptus Forest in Response to Interacting Disturbance Factors. Agric. For. Meteorol. 2012, 153, 67–81. [Google Scholar] [CrossRef]
- Wujeska-Klause, A.; Crous, K.Y.; Ghannoum, O.; Ellsworth, D.S. Leaf Age and ECO2 Both Influence Photosynthesis by Increasing Light Harvesting in Mature Eucalyptus tereticornis at EucFACE. Environ. Exp. Bot. 2019, 167, 103857. [Google Scholar] [CrossRef]
- Bauerle, W.L.; Oren, R.; Way, D.A.; Qian, S.S.; Stoy, P.C.; Thornton, P.E.; Reynolds, R.F. Photoperiodic Regulation of the Seasonal Pattern of Photosynthetic Capacity and the Implications for Carbon Cycling. Proc. Natl. Acad. Sci. USA 2012, 109, 8612–8617. [Google Scholar] [CrossRef] [PubMed]
- Chavana-Bryant, C.; Malhi, Y.; Wu, J.; Asner, G.P.; Anastasiou, A.; Enquist, B.J.; Cosio Caravasi, E.G.; Doughty, C.E.; Saleska, S.R.; Martin, R.E. Leaf Aging of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements. New Phytol. 2017, 214, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoof, C.; Hanert, E.; Vidale, P.L. Simulating Dynamic Crop Growth with an Adapted Land Surface Model–JULES-SUCROS: Model Development and Validation. Agric. For. Meteorol. 2011, 151, 137–153. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef]
- Prior, L.; Bowman, D.; Eamus, D. Seasonal Differences in Leaf Attributes in Australian Tropical Tree Species: Family and Habitat Comparisons. Funct. Ecol. 2004, 18, 707–718. [Google Scholar] [CrossRef]
- Reich, P.B.; Falster, D.S.; Ellsworth, D.S.; Wright, I.J.; Westoby, M.; Oleksyn, J.; Lee, T.D. Controls on Declining Carbon Balance with Leaf Age among 10 Woody Species in Australian Woodland: Do Leaves Have Zero Daily Net Carbon Balances When They Die? New Phytol. 2009, 183, 153–166. [Google Scholar] [CrossRef]
- Magney, T.S.; Bowling, D.R.; Logan, B.A.; Grossmann, K.; Stutz, J.; Blanken, P.D.; Burns, S.P.; Cheng, R.; Garcia, M.A.; Köhler, P.; et al. Mechanistic Evidence for Tracking the Seasonality of Photosynthesis with Solar-Induced Fluorescence. Proc. Natl. Acad. Sci. USA 2019, 116, 11640–11645. [Google Scholar] [CrossRef]
Acronym | Short Definition | Unit |
---|---|---|
EC | Eddy-covariance | - |
Cv | CABLE-POP varying LAIEVI | - |
Cc | CABLE-POP constant LAIEVI | - |
FNEP | Net ecosystem production | Monthly or annual: (g C m−2) Half-hourly: (μmol m−2 s−1) |
FET | Evapotranspiration | Monthly or annual: (g C m−2) Half-hourly: (μmol m−2 s−1) |
FGEP | Gross ecosystem productivity | Monthly or annual: (g C m−2) Half-hourly: (μmol m−2 s−1) |
FER | Ecosystem respiration | Monthly or annual: (g C m−2) Half-hourly: (μmol m−2 s−1) |
LAIEVI | Leaf area index | (m2 m−2) |
PC | Photosynthetic capacity | (μmol m−2 s−1) |
FLfall | Litter fall | (g C m−2 month−1) |
FLgrowth | Leaf growth | (g C m−2 month−1) |
af | Allocation of FNEP to leaves | fraction |
kf | Canopy leaf turnover | fraction month−1 |
Gs,opt | Surface conductance | (mmol m−2 s−1) |
FPPFD | Photosynthetic Photon Flux Density | (μmol m−2 s−1) |
Tair | Air temperature | (°C) |
D | Vapour pressure deficit | (kPa) |
Precip | Precipitation | (mm month−1) |
SWC | Soil water content | (%) |
Parameter | Description | Estimation and 95% CI | Unit |
---|---|---|---|
α (mol mol−1) | Quantum yield of electron transport [60] | 0.14 ± 0.002 | Mol mol−1 |
kn (dimensionless) | Extinction coefficient for leaf nitrogen with canopy depth | 0.61 ± 0.015 | - |
g1 (kPa0.5) | Stomatal conductance parameter [61] | 5.36 ± 0.085 | kPa0.5 |
γ (dimensionless) | Sensitivity of stomatal conductance and root water uptake to SWC [62] | 2.80 × 10−3 ± 0.600 × 10−3 | - |
Vcmax_scalar (dimensionless) | Scaling factor on prior estimate of maximum catalytic activity of Rubisco, as prescribed by [35] | 0.69 ± 0.010 | - |
Year | Precipitation (mm) | Tair (°C) | LAIEVI (m2 m−2) | FNEP,Cv (g C m−2) | FNEP,Cc (g C m−2) | FNEP,data (g C m−2) |
---|---|---|---|---|---|---|
2001 | 752.5 | 17.4 | 1.58 | 114.3 | 114.4 | NA |
2002 | 626.3 | 17.5 | 1.09 | −66.0 | 97.0 | NA |
2003 | 651.1 | 17.2 | 1.03 | −42.0 | 84.5 | NA |
2004 | 648.8 | 17.6 | 1.21 | 8.3 | −1.6 | NA |
2005 | 702.4 | 17.7 | 1.36 | 48.6 | 42.6 | NA |
2006 | 479.2 | 17.6 | 1.23 | 15.8 | −18.8 | NA |
2007 | 1022.4 | 17.7 | 1.32 | 23.7 | 38.0 | NA |
2008 | 810.6 | 16.8 | 1.44 | 90.1 | 112.1 | NA |
2009 | 691.5 | 18.0 | 1.31 | −53.7 | 18.1 | NA |
2010 | 911.4 | 17.5 | 1.26 | −11.8 | 29.5 | NA |
2011 | 782.9 | 17.2 | 1.38 | 14.6 | 30.2 | NA |
2012 | 880.8 | 17.0 | 1.19 | 33.3 | 120.8 | NA |
2013 | 789.2 | 18.0 | 1.39 | 54.6 | 50.1 | NA |
2014 | 714.2 | 18.0 | 1.31 | 19.1 | 58.9 | 101.4 |
2015 | 996.9 | 17.7 | 1.55 | 51.9 | 0.8 | 171.2 |
2016 | 779.5 | 18.3 | 1.64 | 125.1 | 61.9 | 392.7 |
2017 | 731.0 | 18.2 | 1.49 | 62.0 | 58.9 | 148.9 |
Average | 763.0 | 17.6 | 1.34 | 28.7 | 52.8 | 203.5 |
Max–min | 543.2 | 1.5 | 0.62 | 191.1 | 139.6 | 291.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renchon, A.A.; Haverd, V.; Trudinger, C.M.; Medlyn, B.E.; Griebel, A.; Metzen, D.; Knauer, J.; Boer, M.M.; Pendall, E. Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest. Forests 2024, 15, 801. https://doi.org/10.3390/f15050801
Renchon AA, Haverd V, Trudinger CM, Medlyn BE, Griebel A, Metzen D, Knauer J, Boer MM, Pendall E. Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest. Forests. 2024; 15(5):801. https://doi.org/10.3390/f15050801
Chicago/Turabian StyleRenchon, Alexandre A., Vanessa Haverd, Cathy M. Trudinger, Belinda E. Medlyn, Anne Griebel, Daniel Metzen, Jürgen Knauer, Matthias M. Boer, and Elise Pendall. 2024. "Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest" Forests 15, no. 5: 801. https://doi.org/10.3390/f15050801
APA StyleRenchon, A. A., Haverd, V., Trudinger, C. M., Medlyn, B. E., Griebel, A., Metzen, D., Knauer, J., Boer, M. M., & Pendall, E. (2024). Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest. Forests, 15(5), 801. https://doi.org/10.3390/f15050801