Spatio−Temporal Changes and Key Driving Factors of Urban Green Space Configuration on Land Surface Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Land Surface Temperature Retrieval
2.4. Indicators of UGS Configuration
2.5. Bivariate Moran Analysis
2.6. Geographical Convergent Cross Mapping
3. Results
3.1. Spatio−Temporal Changes in UGS Configuration and LST
3.2. Spatial Correlation between UGS Configuration and LST
3.3. Driving Factors of UGS Configuration Influencing LST
4. Discussion
4.1. Spatio−Temporal Differences between UGB Configuration and LST
4.2. Key Driving Factor of UGS Configuration Influencing LST
4.3. Implications for Planning Practice and Policy
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luqman, M.; Rayner, P.J.; Gurney, K.R. On the Impact of Urbanisation on CO2 Emissions. npj Urban. Sustain. 2023, 3, 6. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A Review on the Generation, Determination and Mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; La Sorte, F.A.; Chen, Y.; Wu, J. The Surface Urban Heat Island Effect Decreases Bird Diversity in Chinese Cities. Sci. Total Environ. 2023, 902, 166200. [Google Scholar] [CrossRef] [PubMed]
- Oudin Åström, D.; Bertil, F.; Joacim, R. Heat Wave Impact on Morbidity and Mortality in the Elderly Population: A Review of Recent Studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Tsekeri, E.; Kolokotsa, D.; Santamouris, M. On the Association of Ambient Temperature and Elderly Mortality in a Mediterranean Island—Crete. Sci. Total Environ. 2020, 738, 139843. [Google Scholar] [CrossRef] [PubMed]
- Calice, C.; Clemente, C.; Salvati, A.; Palme, M.; Inostroza, L. Urban Heat Island Effect on the Energy Consumption of Institutional Buildings in Rome. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 082015. [Google Scholar] [CrossRef]
- Yang, F.; Yousefpour, R.; Zhang, Y.; Wang, H. The Assessment of Cooling Capacity of Blue-Green Spaces in Rapidly Developing Cities: A Case Study of Tianjin’s Central Urban Area. Sustain. Cities Soc. 2023, 99, 104918. [Google Scholar] [CrossRef]
- Elliott, H.; Eon, C.; Breadsell, J.K. Improving City Vitality through Urban Heat Reduction with Green Infrastructure and Design Solutions: A Systematic Literature Review. Buildings 2020, 10, 219. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Μu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global Covariation of Carbon Turnover Times with Climate in Terrestrial Ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Borna, R.; Roshan, G.; Moghbel, M.; Szabó, G.; Ata, B.; Attia, S. Mitigation of Climate Change Impact on Bioclimatic Conditions Using Different Green Space Scenarios: The Case of a Hospital in Gorgan Subtropical Climates. Forests 2023, 14, 1978. [Google Scholar] [CrossRef]
- Lehnert, M.; Brabec, M.; Jurek, M.; Tokar, V.; Geletič, J. The Role of Blue and Green Infrastructure in Thermal Sensation in Public Urban Areas: A Case Study of Summer Days in Four Czech Cities. Sustain. Cities Soc. 2021, 66, 102683. [Google Scholar] [CrossRef]
- Kache, P.A.; Santos-Vega, M.; Stewart-Ibarra, A.M.; Cook, E.M.; Seto, K.C.; Diuk-Wasser, M.A. Bridging Landscape Ecology and Urban Science to Respond to the Rising Threat of Mosquito-Borne Diseases. Nat. Ecol. Evol. 2022, 6, 1601–1616. [Google Scholar] [CrossRef]
- Toro-Manríquez, M.D.R.; Huertas Herrera, A.; Soler, R.M.; Lencinas, M.V.; Martínez Pastur, G.J. Combined Effects of Tree Canopy Composition, Landscape Location, and Growing Season on Nothofagus Forest Seeding Patterns in Southern Patagonia. For. Ecol. Manag. 2023, 529, 120708. [Google Scholar] [CrossRef]
- Alonzo, M.; Baker, M.E.; Gao, Y.; Shandas, V. Spatial Configuration and Time of Day Impact the Magnitude of Urban Tree Canopy Cooling. Environ. Res. Lett. 2021, 16, 084028. [Google Scholar] [CrossRef]
- Paschalis, A.; Chakraborty, T.; Fatichi, S.; Meili, N.; Manoli, G. Urban Forests as Main Regulator of the Evaporative Cooling Effect in Cities. AGU Adv. 2021, 2, e2020AV000303. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of Urban Morphological Characteristics on Thermal Environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in Land Surface Temperature and Cooling Efficiency of Green Space in Rapid Urbanization: The Case of Fuzhou City, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Jaworek-Jakubska, J.; Filipiak, M.; Michalski, A.; Napierała-Filipiak, A. Spatio-Temporal Changes of Urban Forests and Planning Evolution in a Highly Dynamical Urban Area: The Case Study of Wrocław, Poland. Forests 2020, 11, 17. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Zhou, S.; Zhou, J.; Jiang, S.; Zhang, Y.; Feng, T.; Zhang, H.; Zhao, Y.; Lai, Z.; et al. Spatial-Temporal Patterns of Urban Expansion by Land Use/Land Cover Transfer in China. Ecol. Indic. 2023, 155, 111009. [Google Scholar] [CrossRef]
- Herold, M.; Couclelis, H.; Clarke, K.C. The Role of Spatial Metrics in the Analysis and Modeling of Urban Land Use Change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Qian, Y.; Li, W.; Han, L. Quantifying and Characterizing the Dynamics of Urban Greenspace at the Patch Level: A New Approach Using Object-Based Image Analysis. Remote Sens. Environ. 2018, 204, 94–108. [Google Scholar] [CrossRef]
- Li, Y.; Ren, C.; Ho, J.Y.; Shi, Y. Landscape Metrics in Assessing How the Configuration of Urban Green Spaces Affects Their Cooling Effect: A Systematic Review of Empirical Studies. Landsc. Urban Plan. 2023, 239, 104842. [Google Scholar] [CrossRef]
- Yi, Y.; Shen, G.; Zhang, C.; Sun, H.; Zhang, Z.; Yin, S. Quantitative Analysis and Prediction of Urban Heat Island Intensity on Urban-Rural Gradient: A Case Study of Shanghai. Sci. Total Environ. 2022, 829, 154264. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Chen, Q.; He, K.; Ji, X.; Han, C. Discrepant Impacts of Land Use and Land Cover on Urban Heat Islands: A Case Study of Shanghai, China. Ecol. Indic. 2014, 47, 171–178. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, R.; Xiang, W.-N. Surface Heat Island in Shanghai and Its Relationship with Urban Development from 1989 to 2013. Adv. Meteorol. 2015, 2016, e9782686. [Google Scholar] [CrossRef]
- Climate Change: Global Temperature|NOAA Climate.Gov. Available online: http://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 27 February 2024).
- Chu, W.; Qiu, S.; Xu, J. Temperature Change of Shanghai and Its Response to Global Warming and Urbanization. Atmosphere 2016, 7, 114. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, Z.; Ding, Y.; Hu, Z.-Z.; Chen, Q. The 2022 Extreme Heatwave in Shanghai, Lower Reaches of the Yangtze River Valley: Combined Influences of Multiscale Variabilities. Adv. Atmos. Sci. 2024, 41, 593–607. [Google Scholar] [CrossRef]
- Lee, P.S.-H.; Park, J. An Effect of Urban Forest on Urban Thermal Environment in Seoul, South Korea, Based on Landsat Imagery Analysis. Forests 2020, 11, 630. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; USDA Forest Service General Technical Report PNW-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.L.; Brierley, G.; O’Sullivan, D. Landscape Structure and Dynamics on the Qinghai-Tibetan Plateau. Ecol. Model. 2016, 339, 7–22. [Google Scholar] [CrossRef]
- Tannier, C.; Thomas, I. Defining and Characterizing Urban Boundaries: A Fractal Analysis of Theoretical Cities and Belgian Cities. Comput. Environ. Urban Syst. 2013, 41, 234–248. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.-Q.; Chen, R. A Land Use Change Model: Integrating Landscape Pattern Indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Han, X. Spatial–Temporal Dynamics of Forest Extent Change in Southwest China in the Recent 20 Years. Forests 2023, 14, 1378. [Google Scholar] [CrossRef]
- Shohan, A.A.A.; Hang, H.T.; Alshayeb, M.J.; Bindajam, A.A. Spatiotemporal Assessment of the Nexus between Urban Sprawl and Land Surface Temperature as Microclimatic Effect: Implications for Urban Planning. Environ. Sci. Pollut. Res. 2024, 31, 29048–29070. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Ladet, S.; Deconchat, M.; Cabanettes, A.; Alard, D.; Balent, G. Relative Contribution of Edge and Interior Zones to Patch Size Effect on Species Richness: An Example for Woody Plants. For. Ecol. Manag. 2010, 259, 266–274. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. Measuring Moran’s I in a Cost-Efficient Manner to Describe a Land-Cover Change Pattern in Large-Scale Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2631–2639. [Google Scholar] [CrossRef]
- Read, J.M.; Lam, N.S.-N. Spatial Methods for Characterising Land Cover and Detecting Land-Cover Changes for the Tropics. Int. J. Remote Sens. 2002, 23, 2457–2474. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I. Visualizing Multivariate Spatial Correlation with Dynamically Linked Windows. In Proceedings of the Specialist Meeting on New Tools for Spatial Data Analysis, Santa Barbara, CA, USA, 22 June 2002. [Google Scholar]
- Bivand, R.S.; Wong, D.W.S. Comparing Implementations of Global and Local Indicators of Spatial Association. Test 2018, 27, 716–748. [Google Scholar] [CrossRef]
- Song, W.; Wang, C.; Chen, W.; Zhang, X.; Li, H.; Li, J. Unlocking the Spatial Heterogeneous Relationship between Per Capita GDP and Nearby Air Quality Using Bivariate Local Indicator of Spatial Association. Resour. Conserv. Recycl. 2020, 160, 104880. [Google Scholar] [CrossRef]
- Peters, J.; Janzing, D.; Schlkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms; The MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0-262-03731-0. [Google Scholar]
- Ma, H.; Leng, S.; Chen, L. Data-Based Prediction and Causality Inference of Nonlinear Dynamics. Sci. China Math. 2018, 61, 403–420. [Google Scholar] [CrossRef]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.-P.; Wang, J. Causal Inference from Cross-Sectional Earth System Data with Geographical Convergent Cross Mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef] [PubMed]
- Team, R. R: A Language and Environment for Statistical Computing. MSOR Connections [Internet]. 2014. Available online: https://www.semanticscholar.org/paper/R%3A-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b(accessed on 9 April 2024).
- Awasthi, A.; Vishwakarma, K.; Pattnayak, K.C. Retrospection of Heatwave and Heat Index. Theor. Appl. Clim. 2022, 147, 589–604. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Huang, J.; Guan, C. Are New Towns Prone to Urban Heat Island Effect? Implications for Planning Form and Function. Sustain. Cities Soc. 2023, 99, 104939. [Google Scholar] [CrossRef]
- Renc, A.; Łupikasza, E. Changes in the Surface Urban Heat Island between 1986 and 2021 in the Polycentric Górnośląsko-Zagłębiowska Metropolis, Southern Poland. Build. Environ. 2024, 247, 110997. [Google Scholar] [CrossRef]
- Lauwaet, D.; Berckmans, J.; Hooyberghs, H.; Wouters, H.; Driesen, G.; Lefebre, F.; De Ridder, K. High Resolution Modelling of the Urban Heat Island of 100 European Cities. Urban Clim. 2024, 54, 101850. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dosio, A.; Dao, H.; van Maarseveen, M. Projections of Human Exposure to Dangerous Heat in African Cities under Multiple Socioeconomic and Climate Scenarios. Earth’s Future 2019, 7, 528–546. [Google Scholar] [CrossRef]
- Wang, H.; Lin, C.; Ou, S.; Feng, Q.; Guo, K.; Xie, J.; Wei, X. Evolutionary Characteristics and Driving Forces of Green Space in Guangzhou from a Zoning Perspective. Forests 2024, 15, 135. [Google Scholar] [CrossRef]
- Abed, S.A.; Halder, B.; Yaseen, Z.M. Investigation of the Decadal Unplanned Urban Expansion Influenced Surface Urban Heat Island Study in the Mosul Metropolis. Urban Clim. 2024, 54, 101845. [Google Scholar] [CrossRef]
- Riccioli, F.; Fratini, R.; Boncinelli, F. The Impacts in Real Estate of Landscape Values: Evidence from Tuscany (Italy). Sustainability 2021, 13, 2236. [Google Scholar] [CrossRef]
- Basu, T.; Das, A. Urbanization Induced Degradation of Urban Green Space and Its Association to the Land Surface Temperature in a Medium-Class City in India. Sustain. Cities Soc. 2023, 90, 104373. [Google Scholar] [CrossRef]
- Mansourmoghaddam, M.; Rousta, I.; Zamani, M.; Olafsson, H. Investigating and Predicting Land Surface Temperature (LST) Based on Remotely Sensed Data during 1987–2030 (A Case Study of Reykjavik City, Iceland). Urban Ecosyst. 2023, 26, 337–359. [Google Scholar] [CrossRef]
- Nordh, H.; Østby, K. Pocket Parks for People—A Study of Park Design and Use. Urban For. Urban Green. 2013, 12, 12–17. [Google Scholar] [CrossRef]
- Spórna, T.; Krzysztofik, R. ‘Inner’ Suburbanisation—Background of the Phenomenon in a Polycentric, Post-Socialist and Post-Industrial Region. Example from the Katowice Conurbation, Poland. Cities 2020, 104, 102789. [Google Scholar] [CrossRef]
- Peiffer-Smadja, O.; Torre, A. Retail Decentralization and Land Use Regulation Policies in Suburban and Rural Communities: The Case of the Île-de-France Region. Habitat Int. 2018, 72, 27–38. [Google Scholar] [CrossRef]
- Jehling, M.; Hecht, R.; Herold, H. Assessing Urban Containment Policies within a Suburban Context—An Approach to Enable a Regional Perspective. Land Use Policy 2018, 77, 846–858. [Google Scholar] [CrossRef]
- Berry, B.J.L. Urbanization and Counterurbanization in the United States. Ann. Am. Acad. Political Soc. Sci. 1980, 451, 13–20. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The Influence of Small Green Space Type and Structure at the Street Level on Urban Heat Island Mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Peschardt, K.K.; Schipperijn, J.; Stigsdotter, U.K. Use of Small Public Urban Green Spaces (SPUGS). Urban For. Urban Green. 2012, 11, 235–244. [Google Scholar] [CrossRef]
- Namwinbown, T.; Imoro, Z.A.; Weobong, C.A.-A.; Tom-Dery, D.; Baatuuwie, B.N.; Aikins, T.K.; Poreku, G.; Lawer, E.A. Patterns of Green Space Change and Fragmentation in a Rapidly Expanding City of Northern Ghana, West Africa. City Environ. Interact. 2024, 21, 100136. [Google Scholar] [CrossRef]
- Park, K. Regreening Suburbia: An Analysis of Urban Greening Approaches in U.S. Sprawl Retrofitting Projects. Urban For. Urban Green. 2023, 88, 128092. [Google Scholar] [CrossRef]
- Deng, Y.; Qi, W.; Fu, B.; Wang, K. Geographical Transformations of Urban Sprawl: Exploring the Spatial Heterogeneity across Cities in China 1992–2015. Cities 2020, 105, 102415. [Google Scholar] [CrossRef]
- Brenner, A.-K.; Haas, W.; Krüger, T.; Matej, S.; Haberl, H.; Schug, F.; Wiedenhofer, D.; Behnisch, M.; Jaeger, J.A.G.; Pichler, M. What Drives Densification and Sprawl in Cities? A Spatially Explicit Assessment for Vienna, between 1984 and 2018. Land Use Policy 2024, 138, 107037. [Google Scholar] [CrossRef]
- Ewing, R.H. Characteristics, Causes, and Effects of Sprawl: A Literature Review. In Urban Ecology: An International Perspective on the Interaction between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008; pp. 519–535. ISBN 978-0-387-73412-5. [Google Scholar]
- Wang, N.; Hao, J.; Zhang, L.; Duan, W.; Shi, Y.; Zhang, J.; Wusimanjiang, P. Basic Farmland Protection System in China: Changes, Conflicts and Prospects. Agronomy 2023, 13, 651. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.; Ye, X.; Cai, Y.; Ma, W.; Chen, M. Analysis of Land Use/Land Cover Change, Population Shift, and Their Effects on Spatiotemporal Patterns of Urban Heat Islands in Metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Zhang, Q.; Li, C.; Zhang, G.; Wang, Y. Spatiotemporal Evolution Differences of Urban Green Space: A Comparative Case Study of Shanghai and Xuchang in China. Land Use Policy 2022, 112, 105824. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global Cooling Updates: Reflective Roofs and Pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Dong, J.; Liu, Q.; Liu, Y. Quantifying Spatial Morphology and Connectivity of Urban Heat Islands in a Megacity: A Radius Approach. Sci. Total Environ. 2020, 714, 136792. [Google Scholar] [CrossRef]
- Li, W.; Cao, Q.; Lang, K.; Wu, J. Linking Potential Heat Source and Sink to Urban Heat Island: Heterogeneous Effects of Landscape Pattern on Land Surface Temperature. Sci. Total Environ. 2017, 586, 457–465. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Huang, Q.; Gao, Y.; Li, F.; Zhang, L. An Improved Method for Assessing Vegetation Cooling Service in Regulating Thermal Environment: A Case Study in Xiamen, China. Ecol. Indic. 2019, 98, 531–542. [Google Scholar] [CrossRef]
- Essery, R. Large-Scale Simulations of Snow Albedo Masking by Forests. Geophys. Res. Lett. 2013, 40, 5521–5525. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the Relationship between Morphological Spatial Pattern of Green Space and Urban Heat Island Using Machine Learning Methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the Impact of Urban Green Space on the Urban Heat Island Effect among Different Urban Functional Zones: A Case Study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, T.; Wang, L. Heat Stress Resilience Assessment of Urban Form from Physical Space Dimension: A Case Study of Guangdong-Hong Kong-Macao Greater Bay Area. Urban Clim. 2024, 55, 101905. [Google Scholar] [CrossRef]
- Kong, L.; Lau, K.K.-L.; Yuan, C.; Chen, Y.; Xu, Y.; Ren, C.; Ng, E. Regulation of Outdoor Thermal Comfort by Trees in Hong Kong. Sustain. Cities Soc. 2017, 31, 12–25. [Google Scholar] [CrossRef]
- Zhou, L.; Gong, Y.; López-Carr, D.; Huang, C. A Critical Role of the Capital Green Belt in Constraining Urban Sprawl and Its Fragmentation Measurement. Land Use Policy 2024, 141, 107148. [Google Scholar] [CrossRef]
- Graça, M.; Cruz, S.; Monteiro, A.; Neset, T.-S. Designing Urban Green Spaces for Climate Adaptation: A Critical Review of Research Outputs. Urban Clim. 2022, 42, 101126. [Google Scholar] [CrossRef]
- Ezimand, K.; Chahardoli, M.; Azadbakht, M.; Matkan, A.A. Spatiotemporal Analysis of Land Surface Temperature Using Multi-Temporal and Multi-Sensor Image Fusion Techniques. Sustain. Cities Soc. 2021, 64, 102508. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef] [PubMed]
- He, B.-J.; Zhu, J.; Zhao, D.-X.; Gou, Z.-H.; Qi, J.-D.; Wang, J. Co-Benefits Approach: Opportunities for Implementing Sponge City and Urban Heat Island Mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
Data | Time | Detailed Information |
---|---|---|
Landsat 5 | 2 August 2003 02:01:44 Coordinated Universal Time | Path: 118, Row: 38 Path: 118, Row: 39. Resolution = 30 m. |
Landsat 8 | 22 August 2022 02:25:32 Coordinated Universal Time | Path: 118, Row: 38 Path: 118, Row: 39. Resolution = 30 m. |
Land cover type | 2003 and 2022 | Six land cover types: construction land, farmland, forests, grasslands, water bodies, and bare land. |
UGS Configuration Indicator | Formula | Explanation |
---|---|---|
Large Patch Index (LPI) | is the area of the patch in square meters and A is the total landscape area in square meters. 0 < LPI ≦ 100. Units = Percent. | |
Number of Patches (NP) | = number of patches in the landscape of patch type (class) i. NP ≥ 1, without limit. Units = None. | |
Landscape Shape Index (LSI) | E* = total length (m) of edge in the landscape; includes the entire landscape boundary and some or all background edge segments. A = total landscape area (m2). LSI ≥ 1, without limit. Units = None. |
Independent Variables | Dependent Variable | |||
---|---|---|---|---|
∆LPI | ∆NP | ∆LSI | ∆LST | |
∆LPI | 0.856 | −0.580 | −0.316 | −0.270 |
∆NP | −0.580 | 0.794 | 0.581 | 0.067 |
∆LSI | −0.316 | 0.582 | 0.729 | 0.015 |
∆LST | −0.272 | 0.070 | 0.017 | 0.773 |
Method | Relationship | ∆LPI | ∆NP | ∆LSI | |||
---|---|---|---|---|---|---|---|
p | p | p | |||||
Pearson Correlation | −0.352 ** | 0.000 | 0.011 | 0.000 | 0.063 * | 0.000 | |
GCCM | x xmap y | 0.14 | 0.00 ** | 0.17 | 0.00 ** | 0.15 | 0.00 ** |
y xmap x | 0.19 | 0.00 ** | 0.11 | 0.00 ** | 0.12 | 0.00 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Lu, X.; Wang, Y. Spatio−Temporal Changes and Key Driving Factors of Urban Green Space Configuration on Land Surface Temperature. Forests 2024, 15, 812. https://doi.org/10.3390/f15050812
Huang J, Lu X, Wang Y. Spatio−Temporal Changes and Key Driving Factors of Urban Green Space Configuration on Land Surface Temperature. Forests. 2024; 15(5):812. https://doi.org/10.3390/f15050812
Chicago/Turabian StyleHuang, Junda, Xinghao Lu, and Yuncai Wang. 2024. "Spatio−Temporal Changes and Key Driving Factors of Urban Green Space Configuration on Land Surface Temperature" Forests 15, no. 5: 812. https://doi.org/10.3390/f15050812
APA StyleHuang, J., Lu, X., & Wang, Y. (2024). Spatio−Temporal Changes and Key Driving Factors of Urban Green Space Configuration on Land Surface Temperature. Forests, 15(5), 812. https://doi.org/10.3390/f15050812