The Effect of Green Stormwater Infrastructures on Urban-Tier Human Thermal Comfort—A Case Study in High-Density Urban Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Study Area and Data Collection
2.3. Meteorological Data Record
2.4. ENVI-Met Parameter Settings and City-Specific Models for the Case Study
2.5. PET and Suggested PET Index
3. Results
3.1. Mean and Peak Values of Regional DPET and %DPET
3.2. Influence of Rainfall on GSI Combination
3.3. Cooling and Humidifying Effects of GSI Combinations in Potential High-Risk Areas of Human Activity
4. Discussion
4.1. Mitigation Effects of Different GSI Combinations on Different LCZs
4.2. Role of Rainwater in Mitigation Measures
4.3. Influence of GSI Combinations on Outdoor Activity Areas
4.4. Limitations of the Study
5. Conclusions
- (1)
- The GSI combination is significantly related to the surface morphological characteristics of the study area. Among these, LCZ2, followed by LCZ1, most requires combinations of multiple forms of GSI to ensure that the GSI shows a strong cooling and humidification effect. In these two LCZs, it is necessary to ensure that there are both ground GSI (RG and PP) and facade GSI (VG and GR) in order to improve the overall thermal comfort of the site. In LCZ3, a single GSI mode can also achieve a good effect in terms of improving thermal comfort, and this area is also the best area for improving thermal comfort using a combination of GSI modes. Among the four forms of GSI, VG has the best effect in terms of improving the thermal comfort of the site, followed by PP.
- (2)
- Under conditions of high temperature and no rainfall, almost all mitigation measures are weakly effective at improving the thermal comfort of the outdoor environment. After rainfall, a more complex GSI combination leads to a cooling effect with a longer duration.
- (3)
- In high-density urban neighborhoods, it is possible to achieve a comfortable outdoor environment only under the premise of providing shade in outdoor pedestrian recreation areas, then appropriately increasing the GSI of these areas. At the same time, increasing trees has a significant strengthening effect on the overall improvement effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Souverijns, N.; De Ridder, K.; Veldeman, N.; Lefebre, F.; Kusambiza-Kiingi, F.; Memela, W.; Jones, N.K.W. Urban heat in Johannesburg and Ekurhuleni, South Africa: A meter-scale assessment and vulnerability analysis. Urban Clim. 2022, 46, 101331. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Xu, J.Y.; Dai, J.Y.; Wu, X.F.; Wu, S.Q.; Zhang, Y.; Wang, F.F.; Gao, A.; Tan, Y.P. Urban rainwater utilization: A review of management modes and harvesting systems. Front. Environ. Sci. 2023, 11, 1025665. [Google Scholar] [CrossRef]
- Ding, F.; Pang, H.; Guo, W. Impact of the urban heat island on residents’ energy consumption: A case study of Qingdao. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 032026. [Google Scholar] [CrossRef]
- Jia, H.F.; Yao, H.R.; Tang, Y.; Yu, S.L.; Field, R.; Tafuri, A.N. LID-BMPs planning for urban runoff control and the case study in China. J. Environ. Manag. 2015, 149, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cristan, R.; Aust, W.M.; Bolding, M.C.; Barrett, S.M.; Munsell, J.F.; Schilling, E. Effectiveness of forestry best management practices in the United States: Literature review. For. Ecol. Manag. 2016, 360, 133–151. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Chesterfield, C. Water Sensitive Urban Design—A Stormwater Management Perspective; Cooperative Research Centre for Catchment Hydrology and Melbourne Water Corporation: Melbourne, VIC, Australia, 2002. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Roon, M.V.; Roon, H.V. Low Impact Urban Design and Development: The Big Picture; Manaaki Whenua Press: Lincoln, New Zealand, 2009. [Google Scholar]
- Gong, C.; Hu, C.J. The research of gray space design of architecture based on green stormwater infrastructure application. In Proceedings of the International Conference—Alternative and Renewable Energy Quest (Areq 2017), Barcelona, Spain, 1–3 February 2017; pp. 219–228. [Google Scholar]
- Afshari, A. A new model of urban cooling demand and heat island application to vertical greenery systems (VGS). Energy Build. 2017, 157, 204–217. [Google Scholar] [CrossRef]
- Xia, T.; Zhao, B.; Yu, J.; Gao, Y.; Wang, X.; Mao, Y.; Zhang, J. Making residential green space exposure evaluation more accurate: A composite assessment framework that integrates objective and subjective indicators. Urban For. Urban Green. 2024, 95, 128290. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, S.; Xia, T.; Yin, Y.; Wang, X.; Cheng, Y.; Mao, Y.; Zhao, B. Residential greenspace exposure, particularly green window-views, is associated with improved sleep quality among older adults: Evidence from a high-density city. Build Environ. 2024, 253, 111315. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 2013, 37, 2–28. [Google Scholar] [CrossRef]
- De Quadros, B.M.; Mizgier, M.G.O. Urban green infrastructures to improve pedestrian thermal comfort: A systematic review. Urban For. Urban Green 2023, 88, 128091. [Google Scholar] [CrossRef]
- He, B.J.; Zhu, J.; Zhao, D.X.; Gou, Z.H.; Qi, J.D.; Wang, J.S. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M. Green Wall systems: Where do we stand? In Proceedings of the Conference on Sustainability in the Built Environment for Climate Change Mitigation (SBE), Thessaloniki, Greece, 23–25 October 2019. [Google Scholar]
- Pirouz, B.; Turco, M.; Palermo, S.A. A Novel Idea for Improving the Efficiency of Green Walls in Urban Environment—An Innovative Design and Technique. Water 2020, 12, 3524. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L. A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renew. Sustain. Energy Rev. 2022, 162, 112463. [Google Scholar] [CrossRef]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K. Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landsc. Urban Plan. 2014, 127, 52–64. [Google Scholar] [CrossRef]
- Acero, J.A.; Koh, E.J.Y.; Li, X.X.; Ruefenacht, L.A.; Pignatta, G.; Norford, L.K. Thermal impact of the orientation and height of vertical greenery on pedestrians in a tropical area. Build Simul. 2019, 12, 973–984. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- An, K.J.; Lam, Y.F.; Hao, S.; Morakinyo, T.E.; Furumai, H. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect. Water Res. 2015, 86, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, K.M.; Tam, W.; Kharaghani, S.; Loaiciga, H. University Park Neighborhood Rain Gardens Project in Los Angeles, California. In World Environmental and Water Resources Congress 2019: Water, Wastewater, and Stormwater; Urban Water Resources; and Municipal Water Infrastructure, Proceedings of the World Environmental and Water Resources Congress 2019, Pittsburgh, PA, USA, 19–23 May 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 132–146. [Google Scholar]
- Bruner, S.G.; Palmer, M.I.; Griffin, K.L.; Naeem, S. Planting design influences green infrastructure performance: Plant species identity and complementarity in rain gardens. Ecol. Appl. 2023, 33, e2902. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.J.; Small, G.E.; Shrestha, P. Investigating potential hydrological ecosystem services in urban gardens through soil amendment experiments and hydrologic models. Urban Ecosyst. 2022, 25, 867–878. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Szpakowski, W.; Poznańska, E.; Boogaard, F.C.; Bobkowska, K.; Gajewska, M. Technical solutions and benefits of introducing rain gardens—Gdańsk case study. Sci. Total Environ. 2022, 835, 155487. [Google Scholar] [CrossRef]
- Buzzard, V.; Gil-Loaiza, J.; Grachet, N.G.; Talkington, H.; Youngerman, C.; Tfaily, M.M.; Meredith, L.K. Green infrastructure influences soil health: Biological divergence one year after installation. Sci. Total Environ. 2021, 801, 149644. [Google Scholar] [CrossRef] [PubMed]
- Burszta-Adamiak, E.; Biniak-Pieróg, M.; Dabek, P.B.; Sternik, A. Rain garden hydrological performance-Responses to real rainfall events. Sci. Total Environ. 2023, 887, 164153. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.H. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Seifeddine, K.; Amziane, S.; Toussaint, E.; Ouldboukhitine, S.E. Review on thermal behavior of cool pavements. Urban Clim. 2023, 51, 101667. [Google Scholar] [CrossRef]
- Yang, J.Y.; Guo, Y.C.; Tam, V.W.Y.; Tan, J.J.; Shen, A.Q.; Zhang, J.F.; Zhang, C.; Lyu, Z. Research on pore-clogging behavior and mechanism in pervious concrete prepared with recycled aggregate. Constr. Build. Mater. 2023, 384, 131420. [Google Scholar] [CrossRef]
- Kousis, I.; Pisello, A.L. Evaluating the performance of cool pavements for urban heat island mitigation under realistic conditions: A systematic review and meta-analysis. Urban Clim. 2023, 49, 101470. [Google Scholar] [CrossRef]
- Wang, J.S.; Meng, Q.L.; Zou, Y.; Qi, Q.L.; Tan, K.H.; Santamouris, M.; He, B.J. Performance synergism of pervious pavement on stormwater management and urban heat island mitigation: A review of its benefits, key parameters, and co-benefits approach. Water Res. 2022, 221, 118755. [Google Scholar] [CrossRef]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. In Proceedings of the 7th International Conference on Building Resilience: Using Scientific Knowledge to Inform Policy and Practice in Disaster Risk Reduction, Bangkok, Thailand, 27–29 November 2017; pp. 691–698. [Google Scholar]
- Yang, X.; Yao, L.; Jin, T.; Jiang, Z. Temporal and spatial variations of local temperatures in the summer of Nanjing. J. Civ. Environ. Eng. 2019, 41, 160–167+174. [Google Scholar]
- Schibuola, L.; Tambani, C. A monthly performance comparison of green infrastructures enhancing urban outdoor thermal comfort. Energy Build. 2022, 273, 112368. [Google Scholar] [CrossRef]
- Fei, Z.; Tao, S.; Jian, W.; Jun, X.; Jinyi, L. Spatio-temporal Evolution Characteristics of Nanjing Heat Island Effect Based on Variation of Surface Parameters. Remote Sens. Inf. 2022, 37, 106–113. [Google Scholar]
- Xu, H.; Sheng, K.; Zhang, M.; Zhang, J. Co-benefits balancing of low-impact development facilities on stormwater management and microclimate improvement on the high-rise residential area in Nanjing. Urban Clim. 2024, 55, 101904. [Google Scholar] [CrossRef]
- Ouyang, W.L.; Morakinyo, T.E.; Ren, C.; Ng, E. The cooling efficiency of variable greenery coverage ratios in different urban densities: A study in a subtropical climate. Build. Environ. 2020, 174, 106772. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, L.; Petitti, D.; Vollaro, E.D.L.; Coppi, M.; Vollaro, A.D.L. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Giorio, M.; Paparella, R. Climate Mitigation Strategies: The Use of Cool Pavements. Sustainability 2023, 15, 7641. [Google Scholar] [CrossRef]
- Faragallah, R.N.; Ragheb, R.A. Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Eng. J. 2022, 13, 101609. [Google Scholar] [CrossRef]
- Liu, Z.X.; Cheng, W.W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Li, J.Y.; Zheng, B.H.; Chen, X.; Qi, Z.Y.; Bedra, K.B.; Zheng, J.A.; Li, Z.L.; Liu, L.Y. Study on a full-year improvement of indoor thermal comfort by different vertical greening patterns. J. Build. Eng. 2021, 35, 101969. [Google Scholar] [CrossRef]
- Ren, J.Y.; Yang, J.; Zhang, Y.Q.; Xiao, X.M.; Li, X.M.; Wang, S.H.; Xia, J.C. Exploring thermal comfort of urban buildings based on local climate zones. J. Clean. Prod. 2022, 340, 130744. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Ogungbenro, S.B.; Abolude, A.T.; Akinsanola, A.A. Quantifying the effect of rain events on outdoor thermal comfort in a high-density city, Hong Kong. Int. J. Biometeorol. 2019, 63, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Yang, X.S.; Zhao, L.H.; Bruse, M.; Meng, Q.L. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build. Environ. 2013, 60, 93–104. [Google Scholar] [CrossRef]
- Ouyang, W.; Sinsel, T.; Simon, H.; Morakinyo, T.E.; Liu, H.; Ng, E. Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Build. Environ. 2022, 207, 108427. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability 2020, 12, 2752. [Google Scholar] [CrossRef]
- Detommaso, M.; Costanzo, V.; Nocera, F. Application of weather data morphing for calibration of urban ENVI-met microclimate models. Results and critical issues. Urban Clim. 2021, 38, 100895. [Google Scholar] [CrossRef]
- Fabbri, K.; Costanzo, V. Drone-assisted infrared thermography for calibration of outdoor microclimate simulation models. Sustain. Cities Soc. 2020, 52, 101855. [Google Scholar] [CrossRef]
- Galal, O.M.; Sailor, D.J.; Mahmoud, H. The impact of urban form on outdoor thermal comfort in hot arid environments during daylight hours, case study: New Aswan. Build. Environ. 2020, 184, 107222. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Walther, E.; Goestchel, Q. The P.E.T. comfort index: Questioning the model. Build. Environ. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Qureshi, A.M.; Rachid, A.; Bartlett, D. Quantifying the cooling effect of urban heat stress interventions. Int. J. Glob. Warm 2023, 30, 60–80. [Google Scholar] [CrossRef]
- Ouyang, W.L.; Morakinyo, T.E.; Lee, Y.L.; Tan, Z.; Ren, C.; Ng, E. How to quantify the cooling effects of green infrastructure strategies from a spatio-temporal perspective: Experience from a parametric study. Landsc. Urban Plan. 2023, 237, 104808. [Google Scholar] [CrossRef]
- Mohajer, H.R.H.; Ding, L.; Santamouris, M. Developing Heat Mitigation Strategies in the Urban Environment of Sydney, Australia. Buildings 2022, 12, 903. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Krebs, L.F.; Johansson, E. Influence of microclimate on the effect of green roofs in Southern Brazil—A study coupling outdoor and indoor thermal simulations. Energy Build. 2021, 241, 110963. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. The Effects of Green Roofs on Outdoor Thermal Comfort, Urban Heat Island Mitigation and Energy Savings. Atmosphere 2020, 11, 123. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Li, Z.L.; Chow, D.H.C.; Yao, J.; Zheng, X.; Zhao, W. The effectiveness of adding horizontal greening and vertical greening to courtyard areas of existing buildings in the hot summer cold winter region of China: A case study for Ningbo. Energy Build. 2019, 196, 227–239. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, T.; Chen, Y.; Zhang, J. How to simulate future scenarios of urban stormwater management? A novel framework coupling climate change, urbanization, and green stormwater infrastructure development. Sci. Total Environ. 2023, 874, 162399. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jiang, Z.D.; Yang, X.S.; He, Y.F.; Xu, T.J.; Chen, S.S. Cooling effects of block-scale facade greening and their relationship with urban form. Build. Environ. 2020, 169, 106552. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, W.; Luo, S.; Zhu, Z.; Bai, Y.; Wang, W.; Pan, L. Effects of vertical greenery systems on the spatiotemporal thermal environment in street canyons with different aspect ratios: A scaled experiment study. Sci. Total Environ. 2023, 859, 160408. [Google Scholar] [CrossRef]
- Jin, C.; Bai, X.; Luo, T.; Zou, M. Effects of green roofs’ variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban For. Urban Green. 2018, 29, 223–237. [Google Scholar] [CrossRef]
- Liu, A.W.; Ma, X.Y.; Du, M.; Su, M.F.; Hong, B. The cooling intensity of green infrastructure in local climate zones: A comparative study in China’s cold region. Urban Clim. 2023, 51, 101631. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jim, C.Y. Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies 2013, 6, 598–618. [Google Scholar] [CrossRef]
- Priya, U.K.; Senthil, R. A review of the impact of the green landscape interventions on the urban microclimate of tropical areas. Build. Environ. 2021, 205, 108190. [Google Scholar] [CrossRef]
- Sandoval, G.F.B.; Pieralisi, R.; Risson, K.D.B.D.; de Moura, A.C.; Toralles, B.M. Clogging phenomenon in Pervious Concrete (PC): A systematic literature review. J. Clean Prod. 2022, 365, 132579. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Jones, D. Cooling Effect of Permeable Asphalt Pavement Under Dry and Wet Conditions. Transp. Res. Rec. 2013, 2372, 97–107. [Google Scholar] [CrossRef]
- Teichmann, F.; Horvath, A.; Luisser, M.; Korjenic, A. The Impact of Small-Scale Greening on the Local Microclimate—A Case Study at Two School Buildings in Vienna. Sustainability 2022, 14, 13089. [Google Scholar] [CrossRef]
Study Case | SVF | AR | BSF | ISF | PSF | HRE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Standard | Case | Standard | Case | Standard | Case | Standard | Case | Standard | Case | Standard | Case | |
LCZ1 Compact high-rise | 0.2–0.4 | 0.34 | >2 | 2.27 | 40–60 | 47.2 | 40–60 | 42.6 | <10 | 10.2 | >25 | 60.5 |
LCZ2 Compact midrise | 0.3–0.6 | 0.43 | >0.75–2 | 1.47 | 40–70 | 48.9 | 30–50 | 35 | <20 | 17.6 | 10–25 | 25.2 |
LCZ3 Compact low-rise | >0.7 | 0.90 | 0.75–1.5 | 0.96 | 40–70 | 47.2 | 20–50 | 29.7 | <30 | 23.1 | 3–10 | 8 |
Vertical greening (A) | Albedo | 0.2 |
Emissivity | 0.97 | |
Greening rate (%) | 100 | |
Leaf area index (m2/m2) | 3 | |
Leaf angle distribution | 0.5 | |
Plant thickness (cm) | 30 | |
Aquifer thickness (cm) | 5 | |
Roof greening (B) | Albedo | 0.2 |
Emissivity | 0.97 | |
Greening rate (%) | 100% | |
Leaf area index (m2/m2) | 3 | |
Leaf angle distribution | 0.5 | |
Plant thickness (cm) | 20 | |
Rain garden (C) | Albedo | 0.2 |
Emissivity | 0.97 | |
Soil materials | Silty clay loam | |
Plant variety | Zoysia japonica | |
Height of plant (cm) | 20 | |
Saturated water thickness (cm) | 20 | |
Pervious pavement (D) | Albedo | 0.40 |
Emissivity | 0.9 | |
Material | Pervious cement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liao, J.; Hong, Y. The Effect of Green Stormwater Infrastructures on Urban-Tier Human Thermal Comfort—A Case Study in High-Density Urban Blocks. Forests 2024, 15, 862. https://doi.org/10.3390/f15050862
Xu H, Liao J, Hong Y. The Effect of Green Stormwater Infrastructures on Urban-Tier Human Thermal Comfort—A Case Study in High-Density Urban Blocks. Forests. 2024; 15(5):862. https://doi.org/10.3390/f15050862
Chicago/Turabian StyleXu, Haishun, Jianhua Liao, and Yating Hong. 2024. "The Effect of Green Stormwater Infrastructures on Urban-Tier Human Thermal Comfort—A Case Study in High-Density Urban Blocks" Forests 15, no. 5: 862. https://doi.org/10.3390/f15050862
APA StyleXu, H., Liao, J., & Hong, Y. (2024). The Effect of Green Stormwater Infrastructures on Urban-Tier Human Thermal Comfort—A Case Study in High-Density Urban Blocks. Forests, 15(5), 862. https://doi.org/10.3390/f15050862