Afforestation Enhances Potential Bacterial Metabolic Function without Concurrent Soil Carbon: A Case Study of Mu Us Sandy Land
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Soil Sampling
2.2. Soil Physicochemical Properties Analysis
2.3. DNA Extraction, PCR Amplification, and Illumina Sequencing
2.4. Statistical Analyses
3. Results
3.1. Soil Properties and Microbial Biomass in Different Land Use Types
3.2. Soil Bacterial Diversity and Community Composition in Different Land Use Types
3.3. Soil Factors Affecting Bacterial Community Composition and Function
4. Discussion
4.1. Changes in Soil Properties in Different Land Use Types
4.2. The Response of Bacterial Diversity and Co-Occurrence Networks to Land Use Types
4.3. Changed Soil Properties in Shaping Bacterial Taxa-Specific
4.4. The Shift of Bacterial Potential Function to Land Use Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Trees, Forests and Land Use in Drylands: The First Global Assessment—Full Report; FAO Forestry Paper No. 184; FAO: Rome, Italy, 2019; p. 193. [Google Scholar]
- Wang, X.M.; Ge, Q.S.; Geng, X.; Wang, Z.S.; Gao, L.; Bryan, B.A.; Chen, S.Q.; Su, Y.N.; Cai, D.W.; Ye, J.S.; et al. Unintended consequences of combating desertification in China. Nat. Commun. 2023, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Ayoubi, S.; Lorenz, N. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem. Appl. Soil Ecol. 2020, 149, 103514. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Giaramida, L.; Reich, P.B.; Khachane, A.N.; Hamonts, K.; Edwards, C.; Lawton, L.A.; Singh, B.K. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J. Ecol. 2016, 104, 936–946. [Google Scholar] [CrossRef]
- Bouchez, T.; Blieux, A.L.; Dequiedt, S.; Domaizon, I.; Dufresne, A.; Ferreira, S.; Godon, J.J.; Hellal, J.; Joulian, C.; Quaiser, A.; et al. Molecular microbiology methods for environmental diagnosis. Environ. Chem. Lett. 2016, 14, 423–441. [Google Scholar] [CrossRef]
- Ma, Z.W.; Zhang, M.X.; Xiao, R.; Cui, Y.; Yu, F.H. Changes in soil microbial biomass and community composition in coastal wetlands affected by restoration projects in a Chinese delta. Geoderma 2017, 289, 124–134. [Google Scholar] [CrossRef]
- Makhalanyane, T.P.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.B.; Cowan, D.A. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 2015, 39, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Lagerlöf, J.; Adolfsson, L.; Börjesson, G.; Ehlers, K.; Vinyoles, G.P. Ingvar Sundh. Land-use intensification and agroforestry in the Kenyan highland: Impacts on soil microbial community composition and functional capacity. Appl. Soil Ecol. 2014, 82, 93–99. [Google Scholar] [CrossRef]
- Han, X.H.; Ren, C.J.; Li, B.Y.; Yan, S.J.; Fu, S.Y.; Gao, D.X.; Zhao, F.Z.; Deng, J.; Yang, G. Growing seasonal characteristics of soil and plants control the temporal patterns of bacterial communities following afforestation. Catena 2019, 178, 288–297. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Lin, C.; Guo, B.L.; Yu, J.H.; Ding, H.; Peng, S.Y.; Sveen, T.R.; Zhang, Y.Y. Effects of re-vegetation restoration on soil bacterial community structure in degraded land in subtropical China. Eur. J. Soil Biol. 2020, 98, 103184. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, J. The impact of land-use change on the soil bacterial community in the Loess Plateau, China. J. Arid. Environ. 2021, 188, 104469. [Google Scholar] [CrossRef]
- Wang, L.; Li, X. Soil Microbial Community and Their Relationship with Soil Properties across Various Landscapes in the Mu Us Desert. Forests 2023, 14, 2152. [Google Scholar] [CrossRef]
- Liu, J.L.; Dang, P.; Gao, Y.; Zhu, H.L.; Zhu, H.N.; Zhao, F.; Zhao, Z. Effects of tree species and soil properties on the composition and diversity of the soil bacterial community following afforestation. For. Ecol. Manag. 2018, 427, 342–349. [Google Scholar] [CrossRef]
- Hu, P.L.; Zhang, W.; Kuzyakov, Y.; Xiao, L.M.; Xiao, D.; Xu, L.; Chen, H.S.; Zhao, J.; Wang, K.L. Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biol. Biochem. 2023, 177, 108925. [Google Scholar] [CrossRef]
- Hartmann, M.; Widmer, F. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl. Environ. Microbiol. 2006, 72, 7804–7812. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.B.; Zhang, Y.W.; Tang, Z.S.; Shangguan, Z.P.; Chang, F.; Jia, F.A.; Chen, Y.P.; He, X.H.; Shi, W.Y.; Deng, L. Effects of grassland afforestation on structure and function of soil bacterial and fungal communities. Sci. Total Environ. 2019, 676, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Huang, B.H.; Gao, J.; Wang, S.Q.; Liao, P.C. The effects of afforestation on soil bacterial communities in temperate grassland are modulated by soil chemical properties. PeerJ 2019, 7, e6147. [Google Scholar] [CrossRef]
- Prosser, J.I.; Bohannan, B.J.M.; Curtis, T.P.; Ellis, R.J.; Firestone, M.K.; Freckleton, R.P.; Green, J.L.; Green, L.E.; Killham, K.; Lennon, J.J.; et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 2007, 5, 384–392. [Google Scholar] [CrossRef]
- Long, H.Z.; Wu, X.K.; Wang, Y.L.; Yan, J.Q.; Guo, X.Y.; An, X.J.; Zhang, Q.H.; Li, Z.M.; Huo, G.H. Effects of revegetation on the composition and diversity of bacterial and fungal communities of sandification land soil, in Southern China. Environ. Monit. Assess. 2021, 193, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, E.; Öpik, M.; Bonari, E.; Ercoli, L. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem. 2015, 84, 210–217. [Google Scholar] [CrossRef]
- Chen, X.D.; Li, H.; Condron, L.M.; Dunfield, K.E.; Wakelin, S.A.; Mitter, E.K.; Jiang, N. Long-term afforestation enhances stochastic processes of bacterial community assembly in a temperate grassland. Geoderma 2023, 430, 116317. [Google Scholar] [CrossRef]
- Dang, P.; Yu, X.; Le, H.E.; Liu, J.L.; Shen, Z.; Zhao, Z. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS ONE 2017, 12, e0186501. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Deng, J.J.; Yin, Y.; Qin, S.J.; Zhu, W.X.; Zhou, Y.B.; Wang, B.; Ruan, H.H.; Jin, L. Bacterial community changes associated with land use type in the forest montane region of northeast China. Forests 2019, 11, 40. [Google Scholar] [CrossRef]
- Deng, Q.; Cheng, X.L.; Hui, D.F.; Zhang, Q.; Li, M.; Zhang, Q.F. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci. Total Environ. 2016, 541, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; Martiny, J.B.H.; Brodie, E.L.; Martiny, A.C.; Treseder, K.K.; Allison, S.D. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.J.; Neilson, J.W.; Kushwaha, P.; Maier, R.M.; Barberán, A. Life-history strategies of soil microbial communities in an arid ecosystem. ISME J. 2021, 15, 649–657. [Google Scholar] [CrossRef]
- Yin, Y.; Yan, Z. Variations of soil bacterial diversity and metabolic function with tidal flat elevation gradient in an artificial mangrove wetland. Sci. Total Environ. 2020, 718, 137385. [Google Scholar] [CrossRef] [PubMed]
- Lipson, D.A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 2015, 6, 126095. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.R.; Le, Y.; Yang, J.Y.; Xu, Y.D.; Bin, C.; Peng, S.S.; Zhang, T.T.; Fu, H.H.; Harris, N.; Gong, P. A global map of planting years of plantations. Sci. Data 2022, 9, 141. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis: Part 3 Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 5, pp. 437–474. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1983; Volume 9, pp. 539–579. [Google Scholar]
- Qu, Z.L.; Liu, B.; Ma, Y.; Sun, H. Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees. Appl. Soil Ecol. 2020, 149, 103515. [Google Scholar] [CrossRef]
- Karimi, B.; Maron, P.A.; Boure, N.C.-P.; Bernard, N.; Gilbert, D.; Ranjard, L. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 2017, 15, 265–281. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Semenov, M.V.; Yao, F.; Ye, J.; Bu, R.C.; Ma, R.A.; Lin, J.J.; Kurganova, I.; Wang, X.G.; et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Glob. Chang. Biol. 2021, 27, 2763–2779. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.M.; Song, Z.W.; Groenigen, K.J.; Xu, Z.Y.; Huang, B.; Zhang, Y.; Hang, X.N.; Tan, S.H.; Zhang, D.G.; Zhang, W.J. Grassland conversion along a climate gradient in northwest China: Implications for soil carbon and nutrients. Soil Use Manag. 2020, 36, 410–419. [Google Scholar] [CrossRef]
- Wang, Z.T.; Li, T.; Li, Y.Z.; Zhao, D.Q.; Han, J.; Liu, Y.; Liao, Y.C. Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil Tillage Res. 2020, 196, 104431. [Google Scholar] [CrossRef]
- Martín, J.A.R.; Álvaro-Fuentes, J.; Gabriel, J.L.; Gutiérrez, C.; Nanos, N.; Escuer, M.; Ramos-Miras, J.J.; Gil, C.; Martín-Lammerding, D.; Boluda, R. Soil organic carbon stock on the Majorca Island: Temporal change in agricultural soil over the last 10 years. Catena 2019, 181, 104087. [Google Scholar] [CrossRef]
- Su, X.; Su, X.L.; Yang, S.C.; Zhou, G.Y.; Ni, M.Y.; Wang, C.; Qin, H.; Zhou, X.H.; Deng, J. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest. Sci. Total Environ. 2020, 736, 139568. [Google Scholar] [CrossRef] [PubMed]
- Augustoa, L.; Rangera, J.; Binkleyb, D.; Rothec, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef]
- Hong, S.B.; Piao, S.L.; Chen, A.P.; Liu, Y.W.; Liu, L.L.; Peng, S.S.; Sardans, J.; Sun, Y.; Peñuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, J.; Gao, W.; Jia, M.; Li, X.; Han, G.; Zhang, G. Exploring the effects of warming and nitrogen deposition on desert steppe based on soil nematodes. Land Degrad. Dev. 2023, 34, 682–697. [Google Scholar] [CrossRef]
- Peichl, M.; Leava, N.A.; Kiely, G. Above-and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland. Plant Soil 2012, 350, 281–296. [Google Scholar] [CrossRef]
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- Hooker, T.D.; Compton, J.E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 2003, 13, 299–313. [Google Scholar] [CrossRef]
- Chodak, M.; Sroka, K.; Woś, B.; Pietrzykowski, M. Chemical and microbial properties of post-mining and post-fire soils afforested with different tree species. Appl. Soil Ecol. 2022, 171, 104321. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.T.; Liu, S.R.; Fu, S.L.; Ming, A.G.; Li, X.Z.; Yao, M.J.; Li, H.; Tian, C. Mixture of tree species enhances stability of the soil bacterial community through phylogenetic diversity. Eur. J. Soil Sci. 2019, 70, 644–654. [Google Scholar] [CrossRef]
- Xue, R.; Wang, C.; Zhao, L.; Sun, B.R.; Wang, B.L. Agricultural intensification weakens the soil health index and stability of microbial networks. Agric. Ecosyst. Environ. 2022, 339, 108118. [Google Scholar] [CrossRef]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.A.; Keller, T.; Charles, R.; van der Heijden, M.G.A. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef]
- Huo, X.Y.; Ren, C.J.; Wang, D.X.; Wu, R.Q.; Wang, Y.S.; Li, Z.F.; Huang, D.C.; Qi, H.Y. Microbial community assembly and its influencing factors of secondary forests in Qinling Mountains. Soil Biol. Biochem. 2023, 184, 109075. [Google Scholar] [CrossRef]
- Stamou, G.P.; Papatheodorou, E.M. Deterministic versus stochastic control in β-diversity, abundance and co-occurrence patterns of a soil nematode assemblage living in a Mediterranean soil. Appl. Soil Ecol. 2023, 188, 104879. [Google Scholar] [CrossRef]
- Santolini, M.; Barabási, A.L. Predicting perturbation patterns from the topology of biological networks. Proc. Natl. Acad. Sci. USA 2018, 115, E6375–E6383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xing, Y.J.; Liu, G.C.; Hu, C.Y.; Wang, X.C.; Yan, G.Y.; Wang, Q.G. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Lan, J.C.; Wang, S.S.; Wang, J.X.; Qi, X.; Long, Q.X.; Huang, M.Z. The shift of soil bacterial community after afforestation influence soil organic carbon and aggregate stability in Karst region. Front. Microbiol. 2022, 13, 901126. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; An, S.; Liu, Y. Soil bacterial community response to vegetation succession after fencing in the grassland of China. Sci. Total Environ. 2017, 609, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yin, Y.; Zhu, W.; Zhou, Y. Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazi Nature Reserve. Front. Microbiol. 2018, 9, 2874. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, E.M.; Mau, R.L.; Schwartz, E.; McHugh, T.A.; Dijkstra, P.; Koch, B.J.; Marks, J.C.; Hungate, B.A. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017, 11, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Rousk, J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 2019, 131, 195–205. [Google Scholar] [CrossRef]
- Che, R.; Qin, J.; Tahmasbian, I.; Wang, F.; Zhou, S.; Xu, Z.; Cui, X. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes. Soil Biol. Biochem. 2018, 120, 145–152. [Google Scholar] [CrossRef]
- Zhou, Y.; Coventry, D.R.; Gupta, V.V.S.R.; Fuentes, D.; Merchant, A.; Kaiser, B.N.; Li, J.S.; Wei, Y.L.; Liu, H.; Wang, Y.Y.; et al. The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biol. 2020, 21, 89. [Google Scholar] [CrossRef]
- de Faria, M.R.; Costa, L.S.A.S.; Chiaramonte, J.B.; Bettiol, W.; Mendes, R. The rhizosphere microbiome: Functions, dynamics, and role in plant protection. Trop. Plant Pathol. 2021, 46, 13–25. [Google Scholar] [CrossRef]
- Zheng, B.X.; Bi, Q.F.; Hao, X.L.; Zhou, G.W.; Yang, X.R. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 2514–2519. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Dubinsky, E.; Yao, W.U.; Rong, Y.U.; Chen, F. Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere. J. Integr. Agric. 2016, 15, 1892–1902. [Google Scholar] [CrossRef]
- Srour, A.Y.; Ammar, H.A.; Subedi, A.; Pimentel, M.; Cook, R.L.; Bond, J.; Fakhoury, A.M. Microbial communities associated with long-term tillage and fertility treatments in a corn-soybean cropping system. Front. Microbiol. 2020, 11, 1363. [Google Scholar] [CrossRef]
- Bromke, M.A. Amino acid biosynthesis pathways in diatoms. Metabolites 2013, 3, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Prieschl, E.E.; Baumruker, T. Sphingolipids: Second messengers, mediators and raft constituents in signaling. Immunol. Today 2000, 21, 555–560. [Google Scholar] [CrossRef]
- Corrigan, R.M.; Bowman, L.; Willis, A.R.; Kaever, V.; Gründling, A. Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J. Biol. Chem. 2015, 290, 5826–5839. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; Swenson, T.; Weihe, C.; Morrison, E.W.; Martiny, J.B.H.; Brodie, E.L.; Northen, T.R.; Allison, S.D. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J. 2020, 14, 2236–2247. [Google Scholar] [CrossRef]
- Dai, W.W.; Peng, B.; Liu, J.; Wang, C.; Wang, X.; Jiang, P.; Bai, E. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry 2021, 154, 371–383. [Google Scholar] [CrossRef]
Soil Properties | Cropland | Shrubland | Woodland | p |
---|---|---|---|---|
pH | 8.52 ± 0.21 b | 8.86 ± 0.15 a | 8.83 ± 0.16 a | <0.001 |
SWC (%) | 4.55 ± 1.29 a | 1.53 ± 0.8 b | 2.07 ± 0.75 b | <0.001 |
Sand | 0.85 ± 0.04 a | 0.87 ± 0.08 a | 0.87 ± 0.05 a | 0.474 |
BD (g cm−3) | 1.4 ± 0.13 b | 1.54 ± 0.07 a | 1.49 ± 0.1 a | <0.01 |
TN (g kg−1) | 0.83 ± 0.18 a | 0.54 ± 0.35 a | 0.81 ± 0.53 a | 0.285 |
TP (g kg−1) | 0.38 ± 0.18 a | 0.25 ± 0.05 b | 0.24 ± 0.04 b | <0.05 |
-N (mg kg−1) | 40.01 ± 31.34 a | 3.46 ± 2.98 b | 4.01 ± 2.73 b | <0.001 |
-N (mg kg−1) | 6.69 ± 1.57 a | 5.42 ± 0.96 a | 5.54 ± 0.95 a | 0.054 |
AP (mg kg−1) | 5.09 ± 2.64 a | 1.67 ± 0.63 b | 1.69 ± 0.75 b | <0.001 |
Soil Factors | Chao 1 | Shannon Index | Simpson Index | Oligotroph/ Copiotroph Ratio |
---|---|---|---|---|
pH | 0.053 | 0.107 | 0.018 | 0.381 * |
SWC | −0.170 | −0.169 | 0.061 | −0.411 * |
Sand | −0.185 | −0.309 | 0.332 | −0.275 |
BD | −0.069 | 0.033 | −0.100 | 0.220 |
SOC | 0.519 * | 0.414 * | −0.387 * | 0.102 |
TN | 0.485 * | 0.373 | −0.384 * | 0.020 |
TP | −0.207 | −0.216 | 0.015 | −0.375 |
DOC | 0.421* | 0.314 | −0.301 | 0.137 |
-N | −0.412 * | −0.364 | 0.152 | −0.483 * |
-N | −0.064 | −0.143 | 0.007 | −0.381 * |
AP | −0.255 | −0.368 | 0.428 * | −0.488 ** |
MBC | 0.636* | 0.534 * | −0.481 * | 0.325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Pei, J.; Tian, Z.; Wan, P.; Li, D. Afforestation Enhances Potential Bacterial Metabolic Function without Concurrent Soil Carbon: A Case Study of Mu Us Sandy Land. Forests 2024, 15, 867. https://doi.org/10.3390/f15050867
Zheng Y, Pei J, Tian Z, Wan P, Li D. Afforestation Enhances Potential Bacterial Metabolic Function without Concurrent Soil Carbon: A Case Study of Mu Us Sandy Land. Forests. 2024; 15(5):867. https://doi.org/10.3390/f15050867
Chicago/Turabian StyleZheng, Yang, Jiuying Pei, Zhun Tian, Pingxing Wan, and Danfeng Li. 2024. "Afforestation Enhances Potential Bacterial Metabolic Function without Concurrent Soil Carbon: A Case Study of Mu Us Sandy Land" Forests 15, no. 5: 867. https://doi.org/10.3390/f15050867
APA StyleZheng, Y., Pei, J., Tian, Z., Wan, P., & Li, D. (2024). Afforestation Enhances Potential Bacterial Metabolic Function without Concurrent Soil Carbon: A Case Study of Mu Us Sandy Land. Forests, 15(5), 867. https://doi.org/10.3390/f15050867