The Culprit behind the Mass Death of Mangroves: Egrets or Rats (Rattus losea)?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Surveys and Nesting Animals
2.2. Mangrove Forest Damage Condition
2.3. Mangrove Leaf Index
3. Results and Analysis
3.1. Relationship between Egret Aggregations and Mangrove Mortality
3.2. Non-Correlation between Egret Aggregations and R. stylosa Mortality
3.3. Internal Factors Influencing Mangrove Mortality
3.4. The Role of R. losea in Mangrove Mortality
3.5. Extensive Harvesting of Fresh R. stylosa Branches for Nest Building
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D.M. The impact of climate change on mangrove forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Chandra, G.; Zhu, Z.; Tieszen, L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2007, 35, 519–528. [Google Scholar] [CrossRef]
- Friess, D.A.; Chua, S.C.; Jaafar, Z.; Krauss, K.W.; Yando, E.S. Mangroves and people: Impacts and interactions. Estuar. Coast. Shelf Sci. 2021, 248, 107155. [Google Scholar] [CrossRef]
- Tuholske, C.; Tane, Z.; López-Carr, D.; Roberts, D.; Cassels, S. Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Appl. Geogr. 2017, 88, 84–93. [Google Scholar] [CrossRef]
- Alongi, D.M. Climate Change and Mangroves. In Mangroves: Biodiversity, Livelihoods and Conservation; Springer Nature: Singapore, 2022; pp. 175–198. [Google Scholar]
- Duke, N.C. Mangrove Floristics and Biogeography Revisited: Further Deductions from Biodiversity Hot Spots, Ancestral Discontinuities, and Common Evolutionary Processes. In Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services; Springer International Publishing: Cham, Switzerland, 2017; pp. 17–53. [Google Scholar]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef]
- Rossi, R.E.; Archer, S.K.; Giri, C.; Layman, C.A. The role of multiple stressors in a dwarf red mangrove (Rhizophora mangle) dieback. Estuar. Coast. Shelf Sci. 2020, 237, 106660. [Google Scholar] [CrossRef]
- Osorio, J.A.; Wingfield, M.J.; Roux, J. A review of factors associated with decline and death of mangroves, with particular reference to fungal pathogens. S. Afr. J. Bot. 2016, 103, 295–301. [Google Scholar] [CrossRef]
- Xin, K.; Xie, Z.; Zhong, C.; Sheng, N.; Gao, C.; Xiao, X. Damage Caused by Sphaeroma to Mangrove Forests in Hainan, Dongzhaigang, China. J. Coast. Res. 2020, 36, 1197–1203. [Google Scholar] [CrossRef]
- Svavarsson, J.; Osore, M.K.; Olafsson, E. Does the wood-borer Sphaeroma terebrans (Crustacea) shape the distribution of the mangrove Rhizophora mucronata? AMBIO A J. Hum. Environ. 2002, 31, 574–579. [Google Scholar] [CrossRef]
- Hangqing, F.; Wenai, L.; Cairong, Z.; Xiang, N. Analytic study on the damages of wood-boring isopod, Sphaeroma, to China mangroves. Guangxi Sci. 2014, 21, 140–146+152. [Google Scholar] [CrossRef]
- Lianghao, P.; Xiaofang, S.; Hangqing, F.; Bin, L.; Yancheng, T.; Chao, S.; Zhinan, S.; Xingru, T. Analysis of Mangrove Mortality Due to Rapid Kaolinite Deposition Caused by Reclamation in Tieshan Bay, Guangxi. J. Guangxi Acad. Sci. 2021, 37, 270–278. [Google Scholar]
- Martínez, C. Trophic niche breadth and overlap of three egret species in a neotropical mangrove swamp. Waterbirds 2010, 33, 285–292. [Google Scholar] [CrossRef]
- Shiwdas, A.; Lakenarine, R.; Seecharran, D. Abundance and Behavior of Migratory Birds in a Mangrove and Salt Marsh Ecosystem in Guyana, South America. Proc. Zool. Soc. 2023, 76, 157–164. [Google Scholar] [CrossRef]
- Ye, Y.X.; Hu, C.S.; Jiang, Y.T.; Davison, G.W.H.; Ding, C.Q. Three-dimensional niche partitioning between two colonially nesting ardeid species in central China. Avian Res. 2021, 12, 33. [Google Scholar] [CrossRef]
- Chen, Y.F. The ecological impact of herons on tea gardens. Ecol. Environ. 2005, 14, 941–944. [Google Scholar]
- Li, W.; Chen, X.L.; Fang, W.Z. The impact of heron colony breeding on the nitrogen, phosphorus, and potassium content of nesting ground soils. Xiamen Univ. Nat. Sci. 2005, 44, 47–49+53. [Google Scholar]
- Zhao, Y.H.; Wu, M.; Shao, X.X. Impact of egrets habitation on accumulation and distribution of various forms of phosphorus in soils of Hangzhou Bay wetland. Acta Ecol. Sin. 2021, 41, 8246–8255. [Google Scholar] [CrossRef]
- Yuan, H.; Shao, X.; Zhao, Y.; Xiong, J.; Wu, M. Long-term egret (Egretta garzetta) habitation alters topsoil and subsoil phosphorus fractions and bacterial communities in coastal wetlands. Biol. Fertil. Soils 2023, 59, 179–190. [Google Scholar] [CrossRef]
- Deng, F.Y. The Impact of Herons on Plant Communities in the Coastal Areas of Guangxi. Master’s Thesis, Guangxi University, Nanning, China, 2004. [Google Scholar]
- Jenni, D.A. A Study of the Ecology of Four Species of Herons during the Breeding Season at Lake Alice, Alachua County, Florida. Ecol. Monogr. 1969, 39, 245–270. [Google Scholar] [CrossRef]
- Ghadirian, T.; Karami, M.; Danehkar, A.; Hemami, M. Population and density estimate of black rat (Rattus rattus) in mangrove forests in hara biosphere reserve—Hormozgan Province. J. Nat. Environ. 2011, 64, 145–153. [Google Scholar]
- Neinavaz, E.; Barati, A.; Brown, J.L.; Etezadifar, F.; Emami, B. Effects of nest characteristics and black rat Rattus rattus predation on daily survival rates of great egret Ardea alba nests in mangrove forest in the Hara Biosphere Reserve, the Persian Gulf. Wildlife Biol. 2013, 19, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ringler, D.; Guillerault, N.; Baumann, M.; Cagnato, M.; Russell, J. Rodenticide baiting black rats (Rattus rattus) in mangrove habitats. Wildlife Res. 2021, 48, 554–560. [Google Scholar] [CrossRef]
- Zhao, S.X. A preliminary study on the ecology of the yellow-bellied rat in mangrove forests. Zool. Res. 1982, 3, 1. [Google Scholar]
- Burrows, D.W. The Role of Insect Leaf Herbivory on the Mangroves Avicennia marina and Rhizophora stylosa. Ph.D. Thesis, James Cook University, Townsville, Australia, 2003. [Google Scholar]
- Ringler, D.; Russell, J.C.; Corre, M.L. Trophic roles of black rats and seabird impacts on tropical islands: Mesopredator release or hyperpredation? Biol. Conserv. 2015, 185, 75–84. [Google Scholar] [CrossRef]
- Russell, J.C.; Ringler, D.; Trombini, A.; Le Corre, M. The island syndrome and population dynamics of introduced rats. Oecologia 2011, 167, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Fall, M.W.; Medina, A.B.; Jackson, W.B. Feeding patterns of Rattus rattus and Rattus exulans on Eniwetok Atoll, Marshall Islands. J. Mammal. 1971, 52, 69–76. [Google Scholar] [CrossRef]
- Wirtz, W.O. Population ecology of the polynesian rat, Rattus exulans, on Kure Atoll, Hawaii. Pac. Sci. 1972, 26, 433–464. [Google Scholar]
- Feare, C.J.; Jaquemet, S.; Le Corre, M. An inventory of sooty terns (Sterna fuscata) in the western Indian Ocean with special reference to threats and trends. Ostrich 2007, 78, 423–434. [Google Scholar] [CrossRef]
- Lorvelec, O.; Delloue, X.; Pascal, M.; Mege, S. Impacts des mammifères allochtones sur quelques espèces autochtones de L’îlet Fajou (Réserve Naturelle Du Grand Cul-De-Sac Marin, Guadeloupe), établis à l’issue d’une Tentative d’éradication. Rev. D’écologie (Terre La Vie) 2004, 59, 293–306. [Google Scholar] [CrossRef]
- Samaniego-Herrera, A.; Aguirre-Muñoz, A.; Bedolla-Guzmán, Y.; Cárdenas-Tapia, A.; Félix-Lizárraga, M.; Méndez-Sánchez, F.; Reina-Ponce, O.; Rojas-Mayoral, E.; Torres-García, F. Eradicating invasive rodents from wet and dry tropical islands in Mexico. Oryx 2018, 52, 559–570. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Meng, H.Y.; Wang, Y.; He, Q. Herbivory enhances the resistance of mangrove forest to cordgrass invasion. Ecology 2018, 99, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Utami, S.; Kunarso, A.; Kurniawan, A.; Lelana, N.; Haneda, N. Pests of Sonneratia caseolaris seedlings in the mangrove restoration area nursery of Berbak-Sembilang national park and its damage. IOP Conf. Ser. Earth Environ. Sci. 2021, 914, 012019. [Google Scholar] [CrossRef]
- Harper, G.A.; Bunbury, N. Invasive rats on tropical islands: Their population biology and impacts on native species. Glob. Ecol. Conserv. 2015, 3, 607–627. [Google Scholar] [CrossRef]
- Lu, P.; Dai, N.; Zhang, M.; Zhang, G.; Zhang, C.; Liu, Z. Reproductive ecology of Rattus losea populations in the Poyang lake region. Acta Ecol. Sin. 2018, 38, 5213–5223. [Google Scholar] [CrossRef]
- Steele, O.C.; Ewel, K.C.; Goldstein, G. The importance of propagule predation in a forest of nonindigenous mangrove trees. Wetlands 1999, 19, 705–708. [Google Scholar] [CrossRef]
Comparison Item | Shankou Yingluo Egret Forest | Dangjiang Yanlou Egret Forest |
---|---|---|
Egret Species | Egretta garzetta, Ardea intermedia | Egretta garzetta, Ardea intermedia |
Number of Egrets | 1974 | 1508 |
Habitat Plant Species | Rhizophora stylosa | Avicennia marina, Aegiceras corniculatum, Kandelia obovata |
Freshwater River Replenishment | No | Yes |
Soil Interstitial Water Salinity | 28‰ | 15‰ |
Plant Mortality Status | 20 acres | Only isolated plants |
Branch-Breaking Nesting Behavior | Relatively common | Less common |
Feature | Rhizophora stylosa | Avicennia marina | Aegiceras corniculatum | Kandelia obovata |
---|---|---|---|---|
Number of Branches | Fewer | More | More | Moderate |
Number of Leaves per Twig (20 cm) | 6–8 | 10–20 | 10–20 | 8–12 |
Mature Leaf Area (mm2) | 2855 | 702 | 1280 | 1546 |
Specific Leaf Area (mm2/g) | 3687.26 | 4084.97 | 5350.52 | 5594.42 |
Leaf Lifespan | 18 months | 13 months | 15 months | 16 months |
Ecological Strategy | Strong K-strategy | R-strategy | R-strategy | Weak K-strategy |
Regeneration of New Branches/Leaves from Trunk Base | Not observed | Observed | Observed | Not observed |
Growth Point Location | Terminal Buds | Branch Nodes | Branch Nodes | Terminal Buds |
Tree Height (m) | 5–6 | 3–4 | 2–3 | 2–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Liu, W.; Pan, L.; Tao, Y.; Liao, X.; Liang, Q.; Wu, H.; Jiang, W. The Culprit behind the Mass Death of Mangroves: Egrets or Rats (Rattus losea)? Forests 2024, 15, 1048. https://doi.org/10.3390/f15061048
Xue Y, Liu W, Pan L, Tao Y, Liao X, Liang Q, Wu H, Jiang W. The Culprit behind the Mass Death of Mangroves: Egrets or Rats (Rattus losea)? Forests. 2024; 15(6):1048. https://doi.org/10.3390/f15061048
Chicago/Turabian StyleXue, Yunhong, Wenai Liu, Lianghao Pan, Yancheng Tao, Xin Liao, Qiuxia Liang, Huiying Wu, and Weiguo Jiang. 2024. "The Culprit behind the Mass Death of Mangroves: Egrets or Rats (Rattus losea)?" Forests 15, no. 6: 1048. https://doi.org/10.3390/f15061048
APA StyleXue, Y., Liu, W., Pan, L., Tao, Y., Liao, X., Liang, Q., Wu, H., & Jiang, W. (2024). The Culprit behind the Mass Death of Mangroves: Egrets or Rats (Rattus losea)? Forests, 15(6), 1048. https://doi.org/10.3390/f15061048