Evaluation of Different Modeling Approaches for Estimating Total Bole Volume of Hispaniolan Pine (Pinus occidentalis Swartz) in Different Ecological Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Data Sets
2.2. Data Exploration
2.3. Approaches to Individual Tree Volume Prediction
2.3.1. Indicator Variables Analysis
- are as previously defined;
- are dichotomous variables;
- are the parameters to be estimated.
2.3.2. Total Bole Volume Model Fitting
- Schumacher and Hall’s [7] equation (SH):
- = total stem volume content outside bark (m3);
- = normal diameter at 1.30 m from the ground outside bark (cm);
- = total tree height (m);
- = natural logarithm;
- = error term;
- = coefficients to be estimated.
- (CV01) Original equation
- Weighted linear regression using four different weights:
- (CV02) Weight 1 = 1/fitted values from the original linear regression between the dependent variable “observed volume” (Vol) and the predictor normal diameter squared times total tree height (D2H);
- (CV03) Weight 2 = 1/fitted value resulting from fitting the absolute values of original residuals against the fitted values of original combined variable regression;
- (CV04) Weight 3 = 1/fitted value resulting from fitting squared values of original residuals against the fitted values of original combined variable regression;
- (CV05) Weight 4 = 1/, where the variance of ε is assumed to be proportional to [13].
- CV0i = variant identification code for model [2];
- C = exponent to be assumed or estimated.
- (SH01) De-transformation of the logarithmic conversion (), solved by employing linear regression and correcting for bias. The correction is achieved by adding one-half of the estimated variance from the fitted regression before exponentiation [14]. The resulting expression is as follows:
- = corrected estimate of the stem volume outside bark;
- = mean volume outside bark estimated in log scale;
- = half-estimated variance in log scale.
- (SH02) Nonlinear SH (model [2]) version.
- (SH03) Nonlinear weighted version SH version assuming exponent c = 2;
- (SH04) Nonlinear weighted SH version with modeled variance (exponent c), where the variance of ε is assumed to be proportional to [13].
2.3.3. Statistical Analysis
2.3.4. Evaluation Criteria
Model Validation and Goodness of Fit Statistics
- : is the model’s likelihood;
- p: is the number of free parameters estimated;
- : is the observed stem wood volume outside bark;
- : is the estimated stem wood volume outside bark;
- : is the total number of observations;
- : is the empirical variance of the response variable.
Ranking of Models
Residual and Quantile-Quantile Plot Graphs
3. Results
3.1. Data Exploration
3.2. Indicator Variables Analysis (IVA)
3.3. Total Bole Volume Model Fitting in the Dry Ecological Zone and the Combined Intermediate and Humid Ecological Zone
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kangas, A.; Pitkänen, T.P.; Mehtätalo, L.; Heikkinen, J. Mixed linear and non-linear tree volume models with regional parameters to main tree species in Finland. For. Int. J. For. Res. 2023, 96, 188–206. [Google Scholar] [CrossRef]
- Li, R.; Weiskittel, A.R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Ann. For. Sci. 2010, 67, 302. [Google Scholar] [CrossRef]
- Clutter, J.L.; Fortson, J.C.; Pienaar, L.V.; Brister, G.H.; Bailey, R.L. Timber Management: A Quantitative Approach, 1st ed.; Krieger Publishing Company: Malabar, FL, USA, 1983; 333p. [Google Scholar]
- Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and Its Applications, 1st ed.; Wiley India Pvt. Ltd.: New Delhi, India; John Wiley & Sons, Inc.: New York, NY, USA, 2014; 365p. [Google Scholar]
- Vibrans, A.C.; Moser, P.; Oliveira, L.Z.; Maçaneiro, J.P. Generic and specific stem volume models for three subtropical forest types in southern Brazil. Ann. For. Sci. 2016, 72, 865–874. [Google Scholar] [CrossRef]
- MMARN—Ministerio de Medio Ambiente y Recursos Naturales Inventario Nacional Forestal de la República Dominicana. Programa Regional de Reducción de Emisiones de la Deforestación y Degradación de Bosques en Centroamérica y Republica Dominicana (REDD III); MMARN: Santo Domingo, Dominican Republic, 2021; 292p. [Google Scholar]
- Schumacher, F.X.; Hall, F.S. Logarithmic expression of timber-tree volume. J. Agric. Res. 1933, 47, 719–734. [Google Scholar]
- Bennett, F.A.; McGee, C.E.; Clutter, J.L. Yield of Old-Field Slash Pine Plantations; No. 107; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 1959.
- Azevedo, G.B.; Tomiazzi, H.V.; Azevedo, S.; Pereira, L.; Teodoro, R.; Pereira de Souza, T.; Silva, T.; Philipe, B.; Guerra, S. Multi-volume modeling of Eucalyptus trees using regression and artificial neural networks. PLoS ONE 2020, 15, e0238703. [Google Scholar] [CrossRef] [PubMed]
- Holdridge, L. Ecología Basada en Zonas de Vida, 1st ed.; Instituto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 1987; 304p. [Google Scholar]
- Bueno-López, S.W. Understanding Growth and Yield of Pinus occidentalis, Sw. in La Sierra, Dominican Republic. Doctor Dissertation, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA, 2009; 256p. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; 457p. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction, 1st ed.; Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement: Montpellier, France, 2012; 215p. [Google Scholar]
- Flewelling, J.W.; Pienaar, L.V. Multiplicative regression with lognormal errors. For. Sci. 1981, 27, 281–289. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. Available online: http://www.rstudio.com/ (accessed on 28 April 2024).
- Hu, N. Development of a New Variable-Form Taper Equation to Investigate Differences in Stem Form Following Release in Eastern White Pine (Pinus strobus L.). Master’s Thesis, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA, 2003; 97p. [Google Scholar]
- Alvarado-Segura, A.A.; Zamudio-Sánchez, F.J.; De La Cruz-De La Cruz, K.I. A Procedure For Choosing Tree-Stem Volume Equations Previously Fitted in a Forest. J. Sustain. For. 2020, 39, 595–607. [Google Scholar] [CrossRef]
- Schabenberger, O.; Pierce, F.J. Contemporary Statistical Models for the Plant and Soil Sciences; CRC Press: Boca Raton, FL, USA, 2002; p. 738. [Google Scholar]
- Abreu, J.C.; Soares, C.P.B.; Leite, H.G.; Binoti, D.H.B.; Silva, G.F. Alternatives to estimate the volume of individual trees in forest formations in the state of Minas Gerais-Brazil. CERNE 2020, 26, 393–402. [Google Scholar] [CrossRef]
- Castillo-López, A.; Quiñonez-Barraza, G.; Diéguez-Aranda, U.; Corral-Rivas, J.J. Compatible Taper and Volume Systems Based on Volume Ratio Models for Four Pine Species in Oaxaca Mexico. Forests 2021, 12, 145. [Google Scholar] [CrossRef]
- Valerio-HernánDry Zone, L.A.; Campos-Vanegas, W.A.; Cruz-Tórrez, L.E.; Pena-Ortiz, J.A.; Vargas-Larreta, B. Improving Volume and Biomass Equations for Pinus oocarpa in Nicaragua. Forests 2024, 15, 309. [Google Scholar] [CrossRef]
- Sharma, M. Total and Merchantable Volume Equations for 25 Commercial Tree Species Grown in Canada and the Northeastern United States. Forests 2021, 12, 1270. [Google Scholar] [CrossRef]
- Sharma, M. Increasing Volumetric Prediction Accuracy: An Essential Prerequisite for End-Product Forecasting in Red Pine. Forests 2020, 11, 1050. [Google Scholar] [CrossRef]
- Ercanli, I.; Senyurt, M.; Bolat, F. A major challenge to machine learning models: Compatible predictions with biological realism in forestry: A case study of individual tree volume. In Proceedings of the 3rd International Conference on Environment and Forest Conservation (ICEFC), Kastamonu, Turkey, 21–23 February 2022; p. 39. [Google Scholar]
- Sahin, A. Analyzing regression models and multi-layer artificial neural network models for estimating taper and tree volume in Crimean pine forests. iForest 2024, 17, 36–44. [Google Scholar] [CrossRef]
- Sharma, M. Inside and outside bark volume models for jack pine (Pinus banksiana) and black spruce (Picea mariana) plantations in Ontario, Canada. For. Chron. 2019, 95, 50–57. [Google Scholar] [CrossRef]
Variable | Ecological Zone | n | Mean | Std Dev | Minimum | Maximum |
---|---|---|---|---|---|---|
Fitting Data Set | ||||||
Diameter (cm) | Dry Zone | 37 | 22.13 | 6.57 | 11.50 | 42.00 |
Intermediate Zone | 48 | 32.63 | 8.34 | 16.50 | 53.50 | |
Humid Zone | 72 | 31.18 | 5.18 | 21.50 | 46.50 | |
Height (m) | Dry Zone | 37 | 16.49 | 2.92 | 10.30 | 24.00 |
Intermediate Zone | 48 | 19.78 | 2.78 | 14.00 | 25.10 | |
Humid Zone | 72 | 24.65 | 4.76 | 14.50 | 35.00 | |
Volume (m3) | Dry Zone | 37 | 0.34 | 0.22 | 0.06 | 1.10 |
Intermediate Zone | 48 | 0.66 | 0.24 | 0.32 | 1.30 | |
Humid Zone | 72 | 0.98 | 0.57 | 0.20 | 2.76 | |
Validation Data Set | ||||||
Diameter (cm) | Dry Zone | 85 | 21.32 | 7.95 | 8.00 | 42.10 |
Intermediate Zone | 90 | 27.26 | 8.20 | 11.00 | 54.20 | |
Humid Zone | 75 | 30.06 | 7.87 | 10.60 | 50.10 | |
Height (m) | Dry Zone | 85 | 16.33 | 4.46 | 7.30 | 26.10 |
Intermediate Zone | 90 | 19.96 | 4.06 | 10.10 | 27.80 | |
Humid Zone | 75 | 20.65 | 3.40 | 9.40 | 27.40 | |
Volume (m3) | Dry Zone | 85 | 0.35 | 0.25 | 0.10 | 1.23 |
Intermediate Zone | 90 | 0.55 | 0.35 | 0.12 | 2.22 | |
Humid Zone | 75 | 0.64 | 0.36 | 0.11 | 1.81 |
Zone | Intercept | Slope |
---|---|---|
Humid versus Dry | Different: p-value = 0.0277 | Same: p-value = 0.1414 |
Humid versus Intermediate | Same: p-value = 0.4851 | Same: p-value = 0.974 |
Dry versus Intermediate | Same: p-value = 0.104 | Different: p-value = 0.0294 |
Fit Statistics | Validation Statistics | Ranking | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Variant Code | RMSE (Rank) | BIAS (Rank) | SSRR (Rank) | RVE (Rank) | AIC (Rank) | RMSE (Rank) | BIAS (Rank) | SSRR (Rank) | RVE (Rank) | Sum Rank | Overall Rank |
Model (2): Effect Variable D2H | CV01 | 1.61E−02 | 3.87E−19 | 1.06E−01 | 2.82E−04 | −1.95E+02 | 7.92E−02 | −1.32E−02 | 5.98E+00 | 3.52E−03 | 46 | 6 |
(5) | (1) | (9) | (9) | (8) | (4) | (5) | (1) | (4) | ||||
CV02 | 1.62E−02 | 9.96E−19 | 9.66E−02 | 2.80E−04 | −2.07E+02 | 8.11E−02 | −1.28E−02 | 6.41E+00 | 3.63E−03 | 38 | 3 | |
(6) | (2) | (6) | (5) | (4) | (5) | (3) | (2) | (5) | ||||
CV03 | 1.62E−02 | −2.41E−04 | 9.67E−02 | 2.80E−04 | −2.06E+02 | 8.21E−02 | −1.37E−02 | 6.42E+00 | 3.71E−03 | 53 | 7 | |
(7) | (6) | (7) | (6) | (5) | (7) | (6) | (3) | (6) | ||||
CV04 | 1.63E−02 | −5.93E−04 | 9.57E−02 | 2.81E−04 | −2.12E+02 | 8.31E−02 | −1.38E−02 | 6.59E+00 | 3.77E−03 | 58 | 8 | |
(9) | (8) | (4) | (8) | (1) | (8) | (7) | (5) | (8) | ||||
CV05 | 1.63E−02 | −6.83E−04 | 9.62E−02 | 2.81E−04 | −2.11E+02 | 8.32E−02 | −1.42E−02 | 6.51E+00 | 3.77E−03 | 61 | 9 | |
(8) | (9) | (5) | (7) | (2) | (9) | (8) | (4) | (9) | ||||
Model (3): Effect Variables D, H | SH01 | 1.48E−02 | 2.70E−04 | 9.55E−02 | 2.49E−04 | −1.08E+02 | 7.36E−02 | −1.30E−02 | 7.20E+00 | 3.19E−03 | 41 | 4 |
(4) | (7) | (1) | (4) | (9) | (3) | (4) | (6) | (3) | ||||
SH02 | 1.46E−02 | −1.81E−04 | 9.85E−02 | 2.39E−04 | −2.00E+02 | 7.02E−02 | −9.89E−03 | 7.28E+00 | 2.97E−03 | 31 | 1 | |
(1) | (5) | (8) | (1) | (6) | (1) | (1) | (7) | (1) | ||||
SH03 | 1.47E−02 | −6.23E−06 | 9.56E−02 | 2.43E−04 | −2.11E+02 | 8.14E−02 | −1.89E−02 | 7.33E+00 | 3.71E−03 | 44 | 5 | |
(3) | (3) | (2) | (3) | (3) | (6) | (9) | (8) | (7) | ||||
SH04 | 1.47E−02 | −2.54E−05 | 9.56E−02 | 2.42E−04 | −1.97E+02 | 7.15E−02 | −1.02E−02 | 7.33E+00 | 3.06E−03 | 33 | 2 | |
(2) | (4) | (3) | (2) | (7) | (2) | (2) | (9) | (2) |
Fit Statistics | Validation Statistics | Ranking | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Variant Code | RMSE (Rank) | BIAS (Rank) | SSRR (Rank) | RVE (Rank) | AIC (Rank) | RMSE (Rank) | BIAS (Rank) | SSRR (Rank) | RVE (Rank) | Sum Rank | Overall Rank |
Model (2): Effect Variable D2H | CV01 | 7.85E−02 | 6.11E−18 | 1.06E+00 | 6.31E−03 | −2.67E+02 | 1.01E−01 | −7.29E−02 | 2.22E+00 | 6.70E−03 | 50 | 7 |
(5) | (2) | (9) | (9) | (8) | (4) | (8) | (1) | (4) | ||||
CV02 | 7.87E−02 | −4.01E−18 | 1.01E+00 | 6.19E−03 | −2.99E+02 | 1.03E−01 | −7.06E−02 | 2.39E+00 | 6.84E−03 | 41 | 4 | |
(6) | (1) | (7) | (6) | (5) | (5) | (4) | (2) | (5) | ||||
CV03 | 7.89E−02 | −1.29E−03 | 1.01E+00 | 6.17E−03 | −3.01E+02 | 1.06E−01 | −7.24E−02 | 2.56E+00 | 7.17E−03 | 49 | 6 | |
(7) | (7) | (6) | (5) | (3) | (6) | (5) | (3) | (7) | ||||
CV04 | 8.08E−02 | −5.31E−03 | 1.00E+00 | 6.19E−03 | −3.11E+02 | 1.14E−01 | −7.27E−02 | 3.23E+00 | 7.81E−03 | 59 | 8 | |
(9) | (8) | (5) | (7) | (2) | (9) | (6) | (5) | (8) | ||||
CV05 | 8.07E−02 | −7.43E−03 | 1.02E+00 | 6.21E−03 | −3.00E+02 | 1.14E−01 | −7.43E−02 | 3.10E+00 | 7.85E−03 | 67 | 9 | |
(8) | (9) | (8) | (8) | (4) | (8) | (9) | (4) | (9) | ||||
Model (3): Effect Variables D, H | SH01 | 7.59E−02 | −5.22E−04 | 9.56E−01 | 5.94E−03 | −2.39E+02 | 9.49E−02 | −6.17E−02 | 4.14E+00 | 6.02E−03 | 35 | 2 |
(4) | (5) | (1) | (4) | (9) | (2) | (2) | (6) | (2) | ||||
SH02 | 7.55E−02 | 6.86E−04 | 9.57E−01 | 5.86E−03 | −2.74E+02 | 9.86E−02 | −6.53E−02 | 4.33E+00 | 6.41E−03 | 36 | 3 | |
(1) | (6) | (2) | (3) | (7) | (3) | (3) | (8) | (3) | ||||
SH03 | 7.56E−02 | 2.08E−04 | 9.65E−01 | 5.83E−03 | −3.12E+02 | 9.43E−02 | −6.14E−02 | 4.22E+00 | 5.97E−03 | 23 | 1 | |
(2) | (4) | (4) | (2) | (1) | (1) | (1) | (7) | (1) | ||||
SH04 | 7.56E−02 | −9.23E−05 | 9.65E−01 | 5.81E−03 | −2.98E+02 | 1.08E−01 | −7.27E−02 | 4.75E+00 | 7.43E−03 | 45 | 5 | |
(3) | (3) | (3) | (1) | (6) | (7) | (7) | (9) | (6) |
CV (Model (2)) | S&H (Model (3)) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | Statistics | CV01 | CV02 | CV03 | CV04 | CV05 | SH01 | SH02 | SH03 | SH04 |
Residual Est. Error | 1.66E−02 | 2.79E−02 | 1.25E+00 | 6.07E+01 | 6.87E−05 | 1.48E−02 | 1.52E−02 | 3.16E−05 | 1.47E−02 | |
Adjusted R2 | 9.92E−01 | 9.93E−01 | 9.92E−01 | 9.92E−01 | 7.60E−01 | 9.93E−01 | 9.93E−01 | 9.93E−01 | 9.93E−01 | |
B0 | Estimate | 1.59E−02 | 1.35E−02 | 1.34E−02 | 1.25E−02 | 1.29E−02 | 6.14E−05 | 5.81E−05 | 5.88E−05 | 5.84E−05 |
Lower Bound 95% CI | 5.54E−03 | 6.80E−03 | 6.36E−03 | 7.69E−03 | 7.66E−03 | 4.69E−05 | 4.29E−05 | 4.48E−05 | 5.84E−05 | |
Upper Bound 95% CI | 2.63E−02 | 2.02E−02 | 2.05E−02 | 1.73E−02 | 1.81E−02 | 8.04E−05 | 7.85E−05 | 7.71E−05 | 5.84E−05 | |
Pr (>|t|) Bo | 3.66E−03 | 2.43E−04 | 4.72E−04 | 6.80E−06 | 1.49E−05 | 5.59E−39 | 1.02E−07 | 1.00E−08 | 9.99E−09 | |
B1 | Estimate | 3.44E−05 | 3.46E−05 | 3.47E−05 | 3.48E−05 | 3.48E−05 | 1.82E+00 | 1.78E+00 | 1.82E+00 | 1.81E+00 |
Lower Bound 95% CI | 3.33E−05 | 3.37E−05 | 3.36E−05 | 3.38E−05 | 3.38E−05 | 1.73E+00 | 1.67E+00 | 1.72E+00 | 1.81E+00 | |
Upper Bound 95% CI | 3.54E−05 | 3.56E−05 | 3.57E−05 | 3.59E−05 | 3.58E−05 | 3.63E+00 | 1.89E+00 | 1.91E+00 | 1.81E+00 | |
Pr (>|t|) B1 | 1.44E−38 | 1.51E−39 | 1.11E−38 | 7.22E−39 | 5.88E−40 | 1.52E−30 | 1.07E−27 | 2.04E−30 | 2.97E−30 | |
B2 | Estimate | 1.02E+00 | 1.08E+00 | 1.04E+00 | 1.04E+00 | |||||
Lower Bound 95% CI | 8.79E−01 | 9.64E−01 | 8.95E−01 | 1.04E+00 | ||||||
Upper Bound 95% CI | 2.04E+00 | 1.19E+00 | 1.18E+00 | 1.04E+00 | ||||||
Pr (>|t|) B2 | 3.88E−16 | 9.02E−20 | 1.75E−16 | 1.35E−16 | ||||||
C | Estimate | 1.74E+00 | 2.00E+00 | 1.90E+00 |
CV (Model (2)) | S&H (Model (3)) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | Statistics | CV01 | CV02 | CV03 | CV04 | CV05 | SH01 | SH02 | SH03 | SH04 |
Residual Est. Error | 5.82E−02 | 4.81E−02 | 4.61E−02 | 3.27E−02 | 3.63E−02 | 6.13E−05 | 5.86E−05 | 5.67E−05 | 5.57E−05 | |
Adjusted R2 | 3.04E−02 | 2.55E−02 | 2.34E−02 | 1.65E−02 | 1.70E−02 | 4.63E−05 | 4.33E−05 | 4.28E−05 | 5.57E−05 | |
B0 | Estimate | 8.60E−02 | 7.07E−02 | 6.88E−02 | 4.89E−02 | 5.55E−02 | 8.15E−05 | 7.92E−05 | 7.50E−05 | 5.58E−05 |
Lower Bound 95% CI | 6.27E−05 | 4.80E−05 | 1.03E−04 | 1.13E−04 | 2.98E−04 | 3.84E−96 | 1.36E−09 | 1.33E−10 | 1.07E−10 | |
Upper Bound 95% CI | 3.13E−05 | 3.17E−05 | 3.19E−05 | 3.26E−05 | 3.25E−05 | 1.82E+00 | 1.79E+00 | 1.78E+00 | 1.79E+00 | |
Pr (>|t|) Bo | 3.04E−05 | 3.07E−05 | 3.08E−05 | 3.15E−05 | 3.14E−05 | 1.74E+00 | 1.71E+00 | 1.70E+00 | 1.79E+00 | |
B1 | Estimate | 3.23E−05 | 3.28E−05 | 3.30E−05 | 3.37E−05 | 3.36E−05 | 3.65E+00 | 9.72E−01 | 1.86E+00 | 1.79E+00 |
Lower Bound 95% CI | 5.65E−95 | 9.39E−92 | 1.66E−88 | 5.40E−90 | 2.43E−91 | 1.67E−75 | 4.29E−76 | 5.83E−75 | 3.44E−75 | |
Upper Bound 95% CI | 1.01E+00 | 1.06E+00 | 1.08E+00 | 1.08E+00 | ||||||
Pr (>|t|) B1 | 9.28E−01 | 1.87E+00 | 9.89E−01 | 1.08E+00 | ||||||
B2 | Estimate | 2.02E+00 | 1.14E+00 | 1.17E+00 | 1.08E+00 | |||||
Lower Bound 95% CI | 5.59E−46 | 2.36E−48 | 2.71E−47 | 3.74E−47 | ||||||
Upper Bound 95% CI | 2.03E+00 | 2.00E+00 | 2.20E+00 | |||||||
Pr (>|t|) B2 | 7.91E−02 | 8.08E−02 | 1.17E+00 | 1.29E+01 | 6.45E−05 | 7.59E−02 | 7.55E−02 | 6.80E−05 | 7.56E−02 | |
C | Estimate | 9.73E−01 | 9.69E−01 | 9.65E−01 | 9.67E−01 | 9.68E−01 | 9.73E−01 | 9.73E−01 | 9.74E−01 | 9.74E−01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno-López, S.W.; Caraballo-Rojas, L.R.; Torres-Herrera, J.G. Evaluation of Different Modeling Approaches for Estimating Total Bole Volume of Hispaniolan Pine (Pinus occidentalis Swartz) in Different Ecological Zones. Forests 2024, 15, 1052. https://doi.org/10.3390/f15061052
Bueno-López SW, Caraballo-Rojas LR, Torres-Herrera JG. Evaluation of Different Modeling Approaches for Estimating Total Bole Volume of Hispaniolan Pine (Pinus occidentalis Swartz) in Different Ecological Zones. Forests. 2024; 15(6):1052. https://doi.org/10.3390/f15061052
Chicago/Turabian StyleBueno-López, Santiago W., Luis R. Caraballo-Rojas, and Juan G. Torres-Herrera. 2024. "Evaluation of Different Modeling Approaches for Estimating Total Bole Volume of Hispaniolan Pine (Pinus occidentalis Swartz) in Different Ecological Zones" Forests 15, no. 6: 1052. https://doi.org/10.3390/f15061052
APA StyleBueno-López, S. W., Caraballo-Rojas, L. R., & Torres-Herrera, J. G. (2024). Evaluation of Different Modeling Approaches for Estimating Total Bole Volume of Hispaniolan Pine (Pinus occidentalis Swartz) in Different Ecological Zones. Forests, 15(6), 1052. https://doi.org/10.3390/f15061052