Impact of Forest City Selection on Green Total Factor Productivity in China under the Background of Sustainable Development
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
Theoretical Background and Research Hypotheses
3. Materials and Methods
3.1. Study Area and Data Source
3.2. Description of Variables
3.3. Model Setting
4. Results
4.1. Benchmark Regression
4.2. Parallel Trend Tests and Policy Dynamics
4.3. Placebo Test
4.4. Robustness Test
4.4.1. PSM-DID Estimation
4.4.2. The Exclusion of Other Competing Hypotheses
4.4.3. Control the Prior Effect
4.4.4. Delete Some Samples
4.5. Analysis of Policy Mechanisms
4.6. Analysis of Heterogeneity
4.6.1. Differentiating between Different Geographic Spatial Locations
4.6.2. Distinguish between Cities and Open High-Speed Rail Differences
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhao, C. Can national forest city construction mitigate air pollution in China? Evidence from a quasi-natural experiment. Environ. Geochem. Health 2022, 45, 3003–3024. [Google Scholar]
- Xie, H.; Yang, C.; Liu, Y. Urban Ecological Culture Construction and the Formation of Residents’ Green Living: Evidence from National Forest City Construction in China. Sustainability 2023, 15, 13496. [Google Scholar] [CrossRef]
- Cheng, M.; Qin, F. Innovation in construction of local eco-civilized cities in China: Cooperative construction mechanism with multi-element objects. J. Chin. Gov. 2019, 6, 375–395. [Google Scholar] [CrossRef]
- Chang, Y.; van Strien, M.J.; Zohner, C.M.; Ghazoul, J.; Kleinschroth, F. Effects of climate, socioeconomic development, and greening governance on enhanced greenness under urban densification. Resour. Conserv. Recycl. 2024, 206, 107624. [Google Scholar] [CrossRef]
- Liao, N.; Luo, X.; He, Y. Could environmental regulation effectively boost the synergy level of carbon emission reduction and air pollutants control? Evidence from industrial sector in China. Atmos. Pollut. Res. 2024, 15, 102173. [Google Scholar] [CrossRef]
- Sevik, H.; Cetin, M.; Belkayalı, N. Effects of Forests on Amounts of CO2: Case Study of Kastamonu and Ilgaz Mountain National Parks. Pol. J. Environ. Stud. 2015, 24, 253–256. [Google Scholar] [CrossRef]
- Anjali, K.; Kant, N.; Sokhi, J. Urban forests and carbon sequestration. Interdiscip. Environ. Rev. 2021, 21, 42–65. [Google Scholar] [CrossRef]
- Matlack, G.R.; Khoury, I.; Naik, B. Tree canopy macrostructure controls heating of asphalt pavement in a moist-temperate urban forest. Urban Ecosyst. 2022, 25, 967–976. [Google Scholar] [CrossRef]
- Batista, D.A.M.; Maciel, E.A.; Machado, D.L.; Coelho, C.P.; Guilherme, F.A.G. Urban greening dynamics in a Brazil Central city as a subsidy for public policies. Urban Ecosyst. 2023, 26, 845–856. [Google Scholar] [CrossRef]
- Nowak, D.J. Urban Forest Structure: The State of Chicago’s Urban Forest; Northeastern Forest Experiment Station, General Technical Report NE-18; USDA: Washington, DC, USA, 1994; pp. 3–18.
- Zhang, Y.; Zhang, T.; Zeng, Y.; Cheng, B.; Li, H. Designating National Forest Cities in China: Does the policy improve the urban living environment? For. Policy Econ. 2021, 125, 102400. [Google Scholar] [CrossRef]
- Lei, H.; Xu, W. How does the transformation of the energy structure impact the coordinated development of economy and environment? Environ. Sci. Pollut. Res. Int. 2023, 30, 112368–112384. [Google Scholar] [CrossRef]
- Koricho, H.H.; Seboka, A.D.; Fufa, F.; Gebreyesus, T.; Song, S. Study on the Ecosystem Services of Urban Forests: Implications for Climate Change Mitigation in the Case of Adama City of Oromiya Regional State, Ethiopia. Urban Ecosyst. 2021, 25, 575–584. [Google Scholar] [CrossRef]
- Wang, C.; Jin, J.; Davies, C.; Chen, W.Y. Urban Forests as Nature-Based Solutions: A Comprehensive Overview of the National Forest City Action in China. Curr. For. Rep. 2024, 10, 119–132. [Google Scholar] [CrossRef]
- Wolf, K.L. Business district streetscapes, trees, and consumer response. J. For. 2005, 103, 396–400. [Google Scholar] [CrossRef]
- Cabe Space. Does Money Grow on Trees; Commission for Architecture and the Built Environment: London, UK, 2005.
- de Sousa, M.P.; Rabbani, A.R.C.; Crepaldi, M.O.S.; da Silva, A.B.F. Arborização viária e sua relação com a infraestrutura urbana em Almenara, MG, Brasil. Terra Plur. 2020, 14, e2014732. [Google Scholar] [CrossRef]
- Padillo, A.R.; de Oña, J. Analysis of the relationships among infrastructure, operation, safety, and environment aspects that influence public transport users: Case study of university small and medium sized cities in Brazil. Transp. Res. Part A 2024, 185, 104115. [Google Scholar]
- Aquino, M.G.C.; das Neves Silva, J.J.; Maestri, M.P. Arborização urbana do bairro Santa Clara, Santarém, Pará: Diversidade florística, origem e conflitos com a fiação elétrica. Biodiversidade 2021, 20, 83–93. [Google Scholar]
- de Sousa, L.A.; Cajaiba, R.L.; da Silva Costa Martins, J.; Da Silva Colácio, D.; de Sousa, E.S.; Pereira, K.S. Levantamento quali-quantitativo da arborização urbana no município de Buriticupu, MA. Rev. Soc. Bras. Arborização Urbana 2019, 14, 42. [Google Scholar] [CrossRef]
- Armstrong, K.E. Partnerships in Urban Forestry: Cities and Nonprofit Tree Planting Organizations in the NortheAlstem United States. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2003. [Google Scholar]
- Hwang, J.; Lee, K.; Yoo, Y.; Kim, Y.; Jeon, S.W.; Choi, Y. Greenbelt’s impact on urban forest habitat: Insights from morphological analysis in quantifying conservation effects. Urban For. Urban Green. 2024, 97, 128360. [Google Scholar] [CrossRef]
- Richards, D.; Etherington, T.R.; Herzig, A.; Lavorel, S. The Importance of Spatial Configuration When Restoring Intensive Production Landscapes for Biodiversity and Ecosystem Service Multifunctionality. Land 2024, 13, 460. [Google Scholar] [CrossRef]
- Aleha, A.; Zahra, S.M.; Qureshi, S.; Shah, S.; Marri, S.A.; Khan, M. Urban forests and their contribution to sustainable urban development in a global context: A case study of Multan, Pakistan. Front. Clim. 2024, 6, 1275102. [Google Scholar] [CrossRef]
- He, W.; Cheng, Y.; Lin, Y.; Zhang, H. Microeconomic effects of designating National Forest Cities: Evidence from China’s publicly traded manufacturing companies. For. Policy Econ. 2022, 136, 102669. [Google Scholar] [CrossRef]
- Xie, H.; Tan, X.; Yang, C.; Li, C. Does Urban Forest Control Smog Pollution? Evidence from National Forest City Project in China. Sustainability 2022, 14, 12897. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Liu, C.; Xiong, L.; Qian, Z. The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective. Land 2022, 11, 1900. [Google Scholar] [CrossRef]
- Lee, D.; Choe, H. Estimating the Impacts of Urban Expansion on Landscape Ecology: Forestland Perspective in the Greater Seoul Metropolitan Area. J. Urban Plan. Dev. 2011, 137, 425–437. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zone. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Beardsley, K.; Thorne, J.H.; Roth, N.E.; Gao, S.; McCoy, M.C. Assessing the influence of rapid urban growth and regional policies on biological resources. Landsc. Urban Plan. 2009, 93, 172–183. [Google Scholar] [CrossRef]
- Shkaruba, A.; Kireyeu, V.; Likhacheva, O. Rural-urban peripheries under socioeconomic transitions: Changing planning contexts, lasting legacies, and growing pressure. Landsc. Urban Plan. 2017, 165, 244–255. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; He, M. The Spatial Interaction Effect of Green Spaces on Urban Economic Growth: Empirical Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10360. [Google Scholar] [CrossRef]
- Laverne, R.J.; Winson, K. The influence of trees and landscaping on rental rates at office buildings. J. Arboric. 2003, 29, 281–290. [Google Scholar] [CrossRef]
- Harris, J.R.; Todaro, M.P. Migration unemployment and Development: A Two -Sector Analysis. Am. Econ. Rev. 1970, 60, 126–142. [Google Scholar]
- Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the Impact of Sustained Exposure to Air Pollution on Life Expectancy from China’s Huai River Policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef] [PubMed]
- Greenstone, M.; Hanna, R. Environmental Regulations, Air and Water Pollution, and Infant Mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef]
- Dahlberg, M.; Eklof, M.; Monseny, J.J. Estimating Preferences for Local Public Services Using Migration Data. Urban Stud. 2012, 49, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563f. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, C.; Xiao, Q.; Xu, T.; Lan, S.; He, J.; Peng, S. Forestry Subsidies, Forestry Regulatory Policies, and Total Factor Productivity in Forestry—Plot-Scale Micro-Survey Data from A Heterogeneous Forest Types Perspective. Forests 2024, 15, 692. [Google Scholar] [CrossRef]
- Feng, R.; Liu, S.; Wang, F.; Wang, K.; Gao, P.; Xu, L. Quantifying the environmental synergistic effect of cooling-air purification-carbon sequestration from urban forest in China. J. Clean. Prod. 2024, 448, 141514. [Google Scholar] [CrossRef]
- Gao, J.; Han, H.; Ge, S. Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens. Land 2023, 12, 1383. [Google Scholar] [CrossRef]
- Mariana, O.; Remo, S.; Serena, K.; Yanxin, L.; Chiara, V.; Patrizia, G.; Gengyuan, L.; Sergio, U. Socioeconomic and Environmental Benefits of Expanding Urban Green Areas: A Joint Application of i-Tree and LCA Approaches. Land 2022, 11, 2106. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, S.; Guo, S. A Study on the Changes of Green Total Factor Productivity in Chinese Cities under Resource and Environmental Constraints. Sustainability 2024, 16, 1658. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y.; Rong, Y. How Environmental Regulations Affect Green Total Factor Productivity—Evidence from Chinese Cities. Sustainability. Sustainability 2024, 16, 3010. [Google Scholar] [CrossRef]
- Wu, C.; Shi, R.; Luo, Y. Does smart city pilot improve green total factor productivity? Evidence from Chinese cities. Environ. Sci. Pollut. Res. Int. 2023, 31, 7380–7395. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhao, C.; Li, X.; Qin, J. Towards low carbon development: The role of forest city constructions in China. Ecol. Indic. 2021, 131, 108199. [Google Scholar] [CrossRef]
- Xu, C.; Dong, L.; Yu, C.; Zhang, Y.; Cheng, B. Can forest city construction affect urban air quality? The evidence from the Beijing-Tianjin-Hebei urban agglomeration of China. J. Clean. Prod. 2020, 264, 121607. [Google Scholar] [CrossRef]
- Campbell, L.K. City of Forests, City of Farms: Sustainability Planning for New York City’s Nature. J. Urban Aff. 2019, 41, 413–415. [Google Scholar]
- Liu, C.; Tang, C.; Liu, Y. Does the transformation of energy structure promote green technological innovation? A quasi–natural experiment based on new energy demonstration city construction. Geosci. Front. 2023, 15, 101615. [Google Scholar] [CrossRef]
Types of Indicators | Definition of Indicators | Average Value | Standard Deviation |
---|---|---|---|
Labor input | Number of employees per unit at year-end | 0.1535 | 0.0888 |
Number of industrial enterprises above designated size | 0.1608 | 0.0819 | |
Capital investment | Investment in fixed assets | 0.1217 | 0.0544 |
Acreage of land for construction | 0.1407 | 0.0667 | |
Science expenditure | 0.1125 | 0.0481 | |
Energy input | Total water supply | 0.1409 | 0.0811 |
Total gas supply | 0.1212 | 0.0650 | |
Electricity consumption in society | 0.1597 | 0.0943 | |
Expected output | Real gross domestic product | 0.1456 | 0.0710 |
Total social consumption per capita | 0.1423 | 0.0685 | |
Urban afforestation and greening area | 0.1431 | 0.0904 | |
Undesired output | Industrial wastewater discharge | 0.1651 | 0.0852 |
Industrial sulfur dioxide emissions | 0.1670 | 0.0731 | |
Industrial smoke and dust emissions | 0.1053 | 0.0205 |
Variable Classification and Name | Variable Meaning | Number of Observations | Average Value | Standard Deviation | |
---|---|---|---|---|---|
Explained variable | Urban green total factor productivity | The Green Development Level of Cities Calculated According to the Index System | 4200 | 0.718 | 0.078 |
Core explanatory variables | Construction of forest city | Forest City Selection System Virtual Variables | 4200 | 0.203 | 0.402 |
Mediating variables | Effect of land spatial allocation | Proportion of total area of urban ecological space to land area | 4200 | 1.209 | 4.225 |
Rationalization of industrial structure | Output Structure and Employment Structure of the Three Major Industries | 4186 | 27.605 | 21.030 | |
Green technology innovation | Total Urban Green Patent Applications | 4200 | 374.277 | 1299.732 | |
Control variable | Urban financial deepening level | Balance of loans of financial institutions/GDP at year-end | 4200 | 0.876 | 0.550 |
Degree of government intervention | Local public finance general budget expenditure/GDP | 4200 | 0.174 | 0.094 | |
Urban population density | Average annual population/land area (in logarithms) | 4145 | 5.758 | 0.904 | |
Urban economic development level | GDP per capita (in logarithms) | 4200 | 10.345 | 0.758 | |
Urban industrial structure | Gross Secondary Industry/GDP | 4200 | 47.564 | 10.819 | |
Regional road transport level | Ratio of Annual Road Freight Volume to Year-end Population | 4200 | 25.638 | 55.334 | |
Regional science and technology expenditure level | Proportion of S & T expenditure to local government expenditure | 4200 | 0.013 | 0.014 |
Variable | Explained Variable: Green Total Factor Productivity | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
did | 0.071 *** (0.003) | 0.051 *** (0.003) | 0.016 *** (0.002) | 0.016 *** (0.002) |
cons | 0.705 *** (0.001) | 0.612 *** (0.008) | 0.716 *** (0.001) | 0.694 *** (0.013) |
R2 | 0.131 | 0.227 | 0.776 | 0.780 |
Control variable | No | Yes | No | Yes |
City fixed | No | No | Yes | Yes |
Fixed year | No | No | Yes | Yes |
Number of observations | 4200 | 4200 | 4200 | 4200 |
Variable | Explained Variable: Green Total Factor Productivity | |
---|---|---|
(1) | (2) | |
did | 0.013 *** (0.003) | 0.012 *** (0.003) |
cons | 0.709 *** (0.001) | 0.677 *** (0.015) |
R2 | 0.768 | 0.773 |
Control variable | No | Yes |
City fixed | No | Yes |
Fixed year | No | Yes |
Number of observations | 2953 | 2953 |
Variable | Explained Variable: Green Total Factor Productivity | |
---|---|---|
Excluding Low Carbon Cities | Excluding Smart Cities | |
did | 0.007 *** (0.002) | 0.007 *** (0.002) |
cons | 0.735 *** (0.012) | 0.733 *** (0.012) |
R2 | 0.768 | 0.773 |
Control variable | Yes | Yes |
City fixed | Yes | Yes |
Fixed year | Yes | Yes |
Number of observations | 4200 | 4200 |
Variable | Explained Variable: Green Total Factor Productivity |
---|---|
did | 0.010 *** (0.003) |
cons | 0.734 *** (0.012) |
R2 | 0.810 |
Control variable | Yes |
City fixed | Yes |
Fixed year | Yes |
Number of observations | 4200 |
Variable | Explained Variable: Green Total Factor Productivity | ||
---|---|---|---|
Delete Some Cities | Excluding Cities in 2022 and 2024 | Shrink Tail | |
did | 0.011 *** (0.002) | 0.010 *** (0.003) | 0.027 *** (0.004) |
cons | 0.744 *** (0.011) | 0.741 *** (0.012) | 0.714 *** (0.013) |
R2 | 0.798 | 0.812 | 0.841 |
Control variable | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes |
Fixed year | Yes | Yes | Yes |
Number of observations | 4035 | 3975 | 3713 |
Variable | Territorial Spatial Planning | Green Technology Innovation | Factor Mobility |
---|---|---|---|
did | 0.108 ** (0.054) | 55.670 *** (4.921) | 0.168 *** (0.061) |
cons | 1.398 *** (0.278) | 174.582 *** (27.333) | 7.312 *** (0.499) |
R2 | 0.107 | 0.879 | 0.193 |
Control variable | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes |
Fixed year | Yes | Yes | Yes |
Number of observations | 4200 | 4200 | 4145 |
Variable | Northeast Region | North China | Northwest Territories | Southeast Coastal Areas | Southwest Region | Middle and Lower Reaches of Yangtze River |
---|---|---|---|---|---|---|
did | 0.016 * (0.009) | −0.001 (0.004) | 0.020 *** (0.006) | 0.004 (0.005) | 0.003 (0.005) | −0.005 (0.004) |
cons | 0.676 *** (0.035) | 0.535 *** (0.029) | 0.653 *** (0.023) | 0.798 *** (0.032) | 0.549 *** (0.031) | 0.747 *** (0.146) |
R2 | 0.779 | 0.884 | 0.855 | 0.798 | 0.857 | 0.870 |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes | Yes | Yes | Yes |
Fixed year | Yes | Yes | Yes | Yes | Yes | Yes |
Number of observations | 510 | 855 | 525 | 855 | 465 | 990 |
Variable | Opening High-Speed Rail Cities | Cities without High-Speed Rail |
---|---|---|
did | 0.007 *** (0.002) | 0.017 *** (0.004) |
cons | 0.787 *** (0.014) | 0.687 *** (0.015) |
R2 | 0.796 | 0.863 |
Control variable | Yes | Yes |
City fixed | Yes | Yes |
Fixed year | Yes | Yes |
Number of observations | 3555 | 645 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zou, F.; Guo, W.; Lu, W.; Deng, Y. Impact of Forest City Selection on Green Total Factor Productivity in China under the Background of Sustainable Development. Forests 2024, 15, 1064. https://doi.org/10.3390/f15061064
Wang Y, Zou F, Guo W, Lu W, Deng Y. Impact of Forest City Selection on Green Total Factor Productivity in China under the Background of Sustainable Development. Forests. 2024; 15(6):1064. https://doi.org/10.3390/f15061064
Chicago/Turabian StyleWang, Yameng, Fan Zou, Wenqing Guo, Weinan Lu, and Yuanjie Deng. 2024. "Impact of Forest City Selection on Green Total Factor Productivity in China under the Background of Sustainable Development" Forests 15, no. 6: 1064. https://doi.org/10.3390/f15061064
APA StyleWang, Y., Zou, F., Guo, W., Lu, W., & Deng, Y. (2024). Impact of Forest City Selection on Green Total Factor Productivity in China under the Background of Sustainable Development. Forests, 15(6), 1064. https://doi.org/10.3390/f15061064