Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Specimen
2.2. Analysis of the Chemical Wood Composition and Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (FTIR-ATR)
2.3. Delignification and Densification of Wood
2.4. Compression and Brinell Hardness Test
2.5. Scanning Electron Microscopy (SEM)
2.6. Statistics
3. Results and Discussion
3.1. Chemical Composition
3.2. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy
3.3. Densification
3.4. Brinell Hardness
3.5. Compressive Strength in Three Anatomical Directions
3.6. Scanning Electron Microscopy (SEM) Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolman, F.; Cote, J.R. Principles of Wood Science and Technology: I Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Niklas, K.J.; Spatz, H.-C. Worldwide Correlations of Mechanical Properties and Green Wood Density. Am. J. Bot. 2010, 97, 1587–1594. [Google Scholar] [CrossRef]
- Jungstedt, E.; Montanari, C.; Östlund, S.; Berglund, L. Mechanical Properties of Transparent High Strength Biocomposites from Delignified Wood Veneer. Compos. Part A Appl. Sci. Manuf. 2020, 133, 105853. [Google Scholar] [CrossRef]
- Xu, E.; Wang, D.; Lin, L. Chemical Structure and Mechanical Properties of Wood Cell Walls Treated with Acid and Alkali Solution. Forests 2020, 11, 87. [Google Scholar] [CrossRef]
- Thomas, D.S.; Montagu, K.D.; Conroy, J.P. Changes in Wood Density of Eucalyptus Camaldulensis Due to Temperature—The Physiological Link between Water Viscosity and Wood Anatomy. For. Ecol. Manag. 2004, 193, 157–165. [Google Scholar] [CrossRef]
- Jaakkola, T.; Mäkinen, H.; Saranpää, P. Wood Density in Norway Spruce: Changes with Thinning Intensity and Tree Age. Can. J. For. Res. 2005, 35, 1767–1778. [Google Scholar] [CrossRef]
- Ross, R.J. Wood Handbook: Wood as an Engineering Material; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021.
- Kutnar, A.; Šernek, M. Densification of Wood. Zb. Gozdarstva Lesar. 2007, 82, 53–62. [Google Scholar]
- Fang, C.-H.; Cloutier, A.; Jiang, Z.-H.; He, J.-Z.; Fei, B.-H. Improvement of Wood Densification Process via Enhancing Steam Diffusion, Distribution, and Evaporation. BioResources 2019, 14, 3278–3288. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R. Development of a Thermo-Hydro-Mechanical Device for Wood Densification Adaptable to Universal Testing Machines and Its Evaluation in a Tropical Species. J. Test. Eval. 2021, 49, 2597–2608. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-351-02822-6. [Google Scholar]
- Sandberg, D.; Navi, P. Introduction to Thermo-Hydro-Mechanical (THM) Wood Processing; Växjö universitet Skog & Trä: Växjö, Sweden, 2007. [Google Scholar]
- Skyba, O.; Schwarze, F.; Niemz, P. Physical and Mechanical Properties of Thermo-Hygro-Mechanically (THM)-Densified Wood. Wood Res. 2009, 54, 1–18. [Google Scholar]
- Fu, Q.; Cloutier, A.; Laghdir, A. Optimization of the Thermo-Hygromechanical (THM) Process for Sugar Maple Wood Densification. BioResources 2016, 11, 8844–8859. [Google Scholar] [CrossRef]
- Bao, M.; Huang, X.; Jiang, M.; Yu, W.; Yu, Y. Effect of Thermo-Hydro-Mechanical Densification on Microstructure and Properties of Poplar Wood (Populus tomentosa). J. Wood Sci. 2017, 63, 591–605. [Google Scholar] [CrossRef]
- Schwarzkopf, M. Densified Wood Impregnated with Phenol Resin for Reduced Set-Recovery. Wood Mater. Sci. Eng. 2021, 16, 35–41. [Google Scholar] [CrossRef]
- Navi, P.; Sandberg, D. Thermo-Hydro-Mechanical Wood Processing; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Diawanich, P.; Matan, N.; Kyokong, B. Evolution of Internal Stress during Drying, Cooling and Conditioning of Rubberwood Lumber. Holz Als Roh-Und Werkst. 2010, 68, 1–12. [Google Scholar] [CrossRef]
- Seborg, R.M. Heat-Stabilized Compressed Wood (Staypak); Report (Forest Products Laboratory (U.S.)); Forest Products Laboratory, Forest Service, U.S. Department of Agriculture: Madison, WI, USA, 1956.
- Wehsener, J.; Bremer, M.; Haller, P.; Fischer, S. Bending Tests of Delignified and Densified Poplar. Wood Mater. Sci. Eng. 2023, 18, 42–50. [Google Scholar] [CrossRef]
- Fang, C.-H.; Mariotti, N.; Cloutier, A.; Koubaa, A.; Blanchet, P. Densification of Wood Veneers by Compression Combined with Heat and Steam. Eur. J. Wood Prod. 2012, 70, 155–163. [Google Scholar] [CrossRef]
- Morsing, N. Densification of Wood.: The Influence of Hygrothermal Treatment on Compression of Beech Perpendicular to Gain; BYG-Rapport; Technical University of Denmark: Kongens Lyngby, Denmark, 1998. [Google Scholar]
- Ito, Y.; Tanahashi, M.; Shigematsu, M.; Shinoda, Y. Compressive-Molding of Wood by High-Pressure Steam-Treatment: Part 2. Mechanism of Permanent Fixation. Holzforschung 1998, 52, 217–221. [Google Scholar] [CrossRef]
- Blomberg, J.; Persson, B.; Blomberg, A. Effects of Semi-Isostatic Densification of Wood on the Variation in Strength Properties with Density. Wood Sci. Technol. 2005, 39, 339–350. [Google Scholar] [CrossRef]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-Hydro and Thermo-Hydro-Mechanical Wood Processing: An Opportunity for Future Environmentally Friendly Wood Products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef]
- Kadivar, M.; Gauss, C.; Ghavami, K.; Savastano, H., Jr. Densification of Bamboo: State of the Art. Materials 2020, 13, 4346. [Google Scholar] [CrossRef]
- Sun, R. Lignin Source and Structural Characterization. ChemSusChem 2020, 13, 4385–4393. [Google Scholar] [CrossRef]
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-08-092589-9. [Google Scholar]
- Wang, Q.; Xiao, S.; Shi, S.Q.; Cai, L. Effect of Light-Delignification on Mechanical, Hydrophobic, and Thermal Properties of High-Strength Molded Fiber Materials. Sci. Rep. 2018, 8, 955. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Li, J.; Zhu, J.Y. Characterization of Microstructure, Chemical, and Physical Properties of Delignified and Densified Poplar Wood. Materials 2021, 14, 5709. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, A.; Wang, S.; Zhang, Q. Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood. BioResources 2016, 11, 4006–4016. [Google Scholar] [CrossRef]
- Jakob, M.; Gaugeler, J.; Gindl-Altmutter, W. Effects of Fiber Angle on the Tensile Properties of Partially Delignified and Densified Wood. Materials 2020, 13, 5405. [Google Scholar] [CrossRef]
- Kuai, B.; Wang, Z.; Gao, J.; Tong, J.; Zhan, T.; Zhang, Y.; Lu, J.; Cai, L. Development of Densified Wood with High Strength and Excellent Dimensional Stability by Impregnating Delignified Poplar by Sodium Silicate. Constr. Build. Mater. 2022, 344, 128282. [Google Scholar] [CrossRef]
- ISO 13061-2; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- Tribulová, T.; Kačík, F.; Evtuguin, D.V.; Čabalová, I.; Ďurkovič, J. The Effects of Transition Metal Sulfates on Cellulose Crystallinity during Accelerated Ageing of Silver Fir Wood. Cellulose 2019, 26, 2625–2638. [Google Scholar] [CrossRef]
- Tappi, T. 223 Cm-01 (2001) Pentosans in Wood and Pulp; US Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2001. [Google Scholar]
- Tappi, T. 222 Om-06 (2006) Acid Insoluble Lignin in Wood and Pulp; US Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2006. [Google Scholar]
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N. Processing Bulk Natural Wood into a High-Performance Structural Material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Mania, P.; Wróblewski, M.; Wójciak, A.; Roszyk, E.; Moliński, W. Hardness of Densified Wood in Relation to Changed Chemical Composition. Forests 2020, 11, 506. [Google Scholar] [CrossRef]
- ISO 13061-5:2020; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 5: Determination of Strength in Compression Perpendicular to Grain. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 13061-1:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://standards.iteh.ai/catalog/standards/iso/c2b4d64b-f874-4026-94d4-3faa1ce1729e/iso-13061-1-2014 (accessed on 9 May 2024).
- EN 1534:2010; Wood Flooring—Determination of Resistance to Indentation—Test Method. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2011. Available online: https://standards.iteh.ai/catalog/standards/cen/53e9be09-7fc1-4178-b222-9d78be718593/en-1534-2010 (accessed on 3 April 2024).
- Prosiński, S. Chemia Drewna, Wyd. 2; PWRiL: Warszawa, Poland, 1984; 475p. [Google Scholar]
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef]
- Liu, C.F.; Xu, F.; Sun, J.X.; Ren, J.L.; Curling, S.; Sun, R.C.; Fowler, P.; Baird, M.S. Physicochemical Characterization of Cellulose from Perennial Ryegrass Leaves (Lolium perenne). Carbohydr. Res. 2006, 341, 2677–2687. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R.; Starbird-Perez, R. Effect of Steaming and Furfuryl Alcohol Impregnation Pre-Treatments on the Spring Back, Set Recovery and Thermal Degradation of Densified Wood of Three Tropical Hardwood Species. Eur. J. Wood Wood Prod. 2023, 81, 467–480. [Google Scholar] [CrossRef]
- Pelit, H.; Emiroglu, F. Density, Hardness and Strength Properties of Densified Fir and Aspen Woods Pretreated with Water Repellents. Holzforschung 2021, 75, 358–367. [Google Scholar] [CrossRef]
- Scharf, A.; Neyses, B.; Sandberg, D. Hardness of Surface-Densified Wood. Part 1: Material or Product Property? Holzforschung 2022, 76, 503–514. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Li, C.; Liu, Y. Effect of Acetylation on the Physical and Mechanical Performances of Mechanical Densified Spruce Wood. Forests 2022, 13, 1620. [Google Scholar] [CrossRef]
Specimens | Percentage of Lignin [%] | Reduction of Lignin [%] |
---|---|---|
Aspen (control) | 23.4 | 39.7 |
Aspen after chemical treatment | 14.1 | |
Scots pine (control) | 29.8 | 21.1 |
Scots pine after chemical treatment | 23.5 |
Material | Number of Specimens | ρmin | ρmean | ρmax | Standard Deviation (±SD) |
---|---|---|---|---|---|
[kg·m−3] | |||||
Aspen (control) | 53 | 429.3 | 458.4 | 486.8 | 18.86 |
Densified aspen | 53 | 985.3 | 1141.7 | 1268.1 | 64.76 |
Scots pine (control) | 53 | 450.5 | 461.9 | 478.4 | 9.49 |
Densified Scots pine | 53 | 1082.9 | 1145.5 | 1204.8 | 27.80 |
Material | Number of Specimens | HBmin | HBmean | HBmax | Standard Deviation (±SD) |
---|---|---|---|---|---|
[N·mm−2] | |||||
Aspen (control) | 10 | 9.1 | 12.4 | 15.3 | 1.20 |
Densified aspen | 10 | 75.5 | 92.8 | 143.1 | 20.30 |
Scots pine (control) | 10 | 11.2 | 16.7 | 24.9 | 2.12 |
Densified Scots pine | 10 | 65.4 | 88.6 | 121.1 | 14.79 |
Material | Number of Specimens | L | T | R |
---|---|---|---|---|
[N·mm−2] | ||||
Aspen (control) | 10 | 47.8 ± 2.8 | 1.6 ± 0.2 | 5.8 ± 0.4 |
Densified aspen | 10 | 85.3 ± 20.7 | 7.9 ± 2.2 | 82.7 ± 19.5 |
Scots pine (control) | 10 | 47.5 ± 1.6 | 2.8 ± 0.4 | 5.3 ± 0.5 |
Densified Scots pine | 10 | 67.8 ± 13.7 | 5.0 ± 1.0 | 130.9 ± 17.7 |
Source of Variation | SSB | df | MSB | SSE | df | MSE | F | p |
---|---|---|---|---|---|---|---|---|
Longitudinal | 998.057 | 1 | 998.057 | 3363.650 | 11 | 305.786 | 3.263 | 0.09822 ns |
Tangential | 25.288 | 1 | 25.288 | 68.981 | 10 | 6.898 | 3.665 | 0.08455 ns |
Radial | 27,824.922 | 1 | 27,824.922 | 16,661.836 | 46 | 362.213 | 76.819 | 0.00000 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mania, P.; Kupfernagel, C.; Curling, S. Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine. Forests 2024, 15, 892. https://doi.org/10.3390/f15060892
Mania P, Kupfernagel C, Curling S. Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine. Forests. 2024; 15(6):892. https://doi.org/10.3390/f15060892
Chicago/Turabian StyleMania, Przemysław, Carlo Kupfernagel, and Simon Curling. 2024. "Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine" Forests 15, no. 6: 892. https://doi.org/10.3390/f15060892
APA StyleMania, P., Kupfernagel, C., & Curling, S. (2024). Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine. Forests, 15(6), 892. https://doi.org/10.3390/f15060892