Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microscopic Identification
2.3. Physical Properties
2.4. Mechanical Properties and Morphological Characteristics
2.5. Chemical Properties
3. Results and Discussion
3.1. Microscopic Identification
3.2. Physical Characterization
3.3. Mechanical Properties and Morphological Characteristics
3.4. Chemical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, G.R.; He, Y.R.; Wu, Z.H. Effects of thermal treatment on the dimensional stability and chemical constituents of new and aged camphorwood. BioResources 2022, 17, 4186–4195. [Google Scholar] [CrossRef]
- Feng, X.; Sheng, Y.; Ge, X.; Wu, Z.; Huang, Q. Evaluation of The Properties of Hybrid Yellow Poplar (Liriodendron Sino-Americanum): A Comparison Study with Yellow Poplar (Liriodendron tulipifera). Maderas-Cienc. Y Tecnol. 2021, 23. [Google Scholar] [CrossRef]
- Feng, X.; Chen, J.; Yu, S.; Wu, Z.; Huang, Q. Mild Hydrothermal Modification of Beech Wood (Zelkova schneideriana Hand-Mzt): Its Physical, Structural, and Mechanical Properties. Eur. J. Wood Wood Prod. 2022, 80, 933–945. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Tu, X.; Ma, W.; Huang, H.; Varodi, A.M. Characteristics of Ancient Ship Wood from Taicang of the Yuan Dynasty. Materials 2023, 16, 104. [Google Scholar] [CrossRef]
- Grattan, D.W. Waterlogged Wood. Conserv. Mar. Archaeol. Objects 1987, 1, 55–67. [Google Scholar]
- Björdal, C.G. Microbial Degradation of Waterlogged Archaeological Wood. J. Cult. Herit. 2012, 13, 118–122. [Google Scholar] [CrossRef]
- Broda, M.; Hill, C.A. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Majka, J.; Zborowska, M.; Fejfer, M.; Waliszewska, B.; Olek, W. Dimensional Stability and Hygroscopic Properties of PEG Treated Irregularly Degraded Waterlogged Scots Pine Wood. J. Cult. Herit. 2018, 31, 133–140. [Google Scholar] [CrossRef]
- Bjurhager, I.; Halonen, H.; Lindfors, E.L.; Iversen, T.; Almkvist, G.; Gamstedt, E.K.; Berglund, L.A. State of Degradation in Archaeological Oak from the 17th Century Vasa Ship: Substantial Strength Loss Correlates with Reduction in (Holo) Cellulose Molecular Weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef]
- Cao, H.; Gao, X.; Chen, J.; Xi, G.; Yin, Y.; Guo, J. Changes in Moisture Characteristics of Waterlogged Archaeological Wood Owing to Microbial Degradation. Forests 2022, 14, 9. [Google Scholar] [CrossRef]
- Li, R.; Guo, J.; Macchioni, N.; Pizzo, B.; Xi, G.; Tian, X.; Chen, J.; Sun, J.; Jiang, X.; Cao, J.; et al. Characterisation of Waterlogged Archaeological Wood from Nanhai No. 1 Shipwreck by Multidisciplinary Diagnostic Methods. J. Cult. Herit. 2022, 56, 25–35. [Google Scholar] [CrossRef]
- Muyzer, G.; Stams, A.J.M. The Ecology and Biotechnology of Sulphate-Reducing Bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Kilic, N.; Kiliç, A.G. Analysis of Waterlogged Woods: Example of Yenikapi Shipwreck. Art-Sanat Derg. 2018, 9, 1–11. [Google Scholar]
- Blanchette, R.A.; Nilsson, T.; Daniel, G.; Abad, A.R. Biological Degradation of Wood. In Archaeological Wood: Properties, Chemistry, and Preservation; Rowell, R.M., Barbour, R.J., Eds.; American Chemical Society: Washington, DC, USA, 1990; pp. 141–174. [Google Scholar]
- Giachi, G.; Capretti, C.; Macchioni, N.; Pizzo, B.; Donato, I.D. A Methodological Approach in the Evaluation of the Efficacy of Treatments for the Dimensional Stabilisation of Waterlogged Archaeological Wood. J. Cult. Herit. 2010, 11, 91–101. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Krolikowska-Pataraja, K.; Siuda, J. The State of Degradation of Waterlogged Wood from Different Environments. In Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology; Warsaw University of Life Sciences: Warsaw, Poland, 2015. [Google Scholar]
- Liu, X.; Ma, W.; Tu, X.; Huang, H.; Varodi, A.M. Study on the Wood Characteristics of the Chinese Ancient Ship Luoyang I. Materials 2023, 6, 1145. [Google Scholar] [CrossRef] [PubMed]
- ISO 13061–1:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- Hoffmann, P.; Jones, M.A. Structure and Degradation Process for Waterlogged Archaeological Wood. In Archaeological Wood: Properties, Chemistry, and Preservation; Rowell, R.M., Barbour, R.J., Eds.; American Chemical Society: Washington, DC, USA, 1990; pp. 35–65. [Google Scholar]
- Jensen, P.; Gregory, D.J. Selected Physical Parameters to Characterize the State of Preservation of Archaeological Wood: A Practical Guide for Their Determination. J. Archaeol. Sci. 2006, 33, 551–559. [Google Scholar] [CrossRef]
- Varivodina, I.; Kosichenko, N.; Varivodin, V.; Sedliačik, J. Interconnections Among the Rate of Growth, Porosity, and Wood Water Absorption. Wood Res. 2010, 55, 59–66. [Google Scholar]
- Ugolev, B.N. Wood Science and Bases of Forest Commodity Science: Textbook for Higher Educational Institutions of Forestry Engineering; MGUL: Moscow, Russia, 1986; p. 351. [Google Scholar]
- ISO 13061–17:2017; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. International Organization for Standardization: Geneva, Switzerland, 2017.
- Tappi, T. 204 cm-97, Solvent Extractives of Wood and Pulp; Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2007. [Google Scholar]
- Tappi, T. 222 cm-02, Acid-Insoluble Lignin in Wood and Pulp; Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 1997. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Steele, J.H.; Ifju, G.; Johnson, J.A. Quantitative Characterization of Wood Microstructure. J. Microsc. 1976, 107, 297–311. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, J.; Liu, P. Chinese Wood Flora; China Forestry Publishing House: Beijing, China, 1992. [Google Scholar]
- Wang, C.; Yu, C.; Liu, M.; Peter, B. Formation and Influencing Factors of Dew in Sparse Elm Woods and Grassland in a Semi-Arid area. Acta Ecol. Sin. 2017, 37, 125–132. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, L.; Tu, X.; Zhang, C.; Huang, H.; Varodi, A.M. Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination. Materials 2023, 16, 510. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, J.; Qiu, J.; Guo, M. Degradation assessment of waterlogged wood at Haimenkou site. Frat. Ed Integrità Strutt. 2014, 8, 495–501. [Google Scholar]
- Jong, J. Conservation Techniques for Old Archaeological Wood from Shipwrecks Found in the Netherlands. In Biodeterioration Investigation Techniques; Walters, A.H., Ed.; Applied Science: London, UK, 1977; pp. 295–338. [Google Scholar]
- Kennedy, A.; Pennington, E.R. Conservation of Chemically Degraded Waterlogged Wood with Sugars. Stud. Conserv. 2014, 59, 194–201. [Google Scholar] [CrossRef]
- Babiński, L.; Izdebska-Mucha, D.; Waliszewska, B. Evaluation of the State of Preservation of Waterlogged Archaeological Wood Based on Its Physical Properties: Basic Density vs. Wood Substance Density. J. Archaeol. Sci. 2014, 46, 372–383. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, H. Research Progress of Wood Cell Wall Modification and Functional Improvement: A Review. Materials 2022, 15, 1598. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Liu, H. Drying Stress and Strain of Wood: A Review. Appl. Sci. 2021, 11, 5023. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhao, M.; Liu, H. Study on free shrinkage and rheological characteristics of Eucalyptus urophylla × E. grandis during conventional drying. Wood Mater. Sci. Eng. 2024, 2311827. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, X.; Yang, L. Dewatering characteristics of Juglans mandshurica wood using supercritical carbon dioxide: A comparison with conventional drying. Dry. Technol. 2024, 42, 2324931. [Google Scholar] [CrossRef]
- Lionetto, F.; Quarta, G.; Cataldi, A.; Auriemma, R.; Calcagnile, L.; Frigione, M. Characterization and Dating of Waterlogged Woods from an Ancient Harbor in Italy. J. Cult. Herit. 2014, 15, 213–217. [Google Scholar] [CrossRef]
- Han, Y.; Du, J.; Huang, X.; Ma, K.; Wang, Y.; Guo, P.; Pan, J. Chemical Properties and Microbial Analysis of Waterlogged Archaeological Wood from the Nanhai No. 1 Shipwreck. Forests 2021, 12, 587. [Google Scholar] [CrossRef]
- Guo, J.; Xiao, L.; Han, L.; Wu, H.; Yang, T.; Wu, S.; Yin, Y. Deterioration of the Cell Wall in Waterlogged Wooden Archaeological Artifacts, 2400 Years Old. IAWA J. 2019, 40, 820–844. [Google Scholar] [CrossRef]
- Emara, M.; Barris, C.; Baena, M.; Torres, L.; Barros, J. Bond behavior of NSM CFRP laminates in concrete under sustained loading. Constr. Build. Mater. 2018, 177, 237–246. [Google Scholar] [CrossRef]
- Pecoraro, E.; Pizzo, B.; Alves, A.; Macchioni, N.; Rodrigues, J.C. Measuring the Chemical Composition of Waterlogged Decayed Wood by Near Infrared Spectroscopy. Microchem. J. 2015, 122, 176–188. [Google Scholar] [CrossRef]
- Passialis, C.N. Physico-Chemical Characteristics of Waterlogged Archaeological Wood. Holzforschung 1997, 51, 111–113. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, T.Y.; Wen, J.L.; Zhao, Y.-L.; Qiu, J.; Sun, R.-C. Multi-Analysis of Chemical Transformations of Lignin Macromolecules from Waterlogged Archaeological Wood. Int. J. Biol. Macromol. 2018, 109, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Colombini, M.P.; Lucejko, J.J.; Modugno, F.; Orlandi, M.; Tolppa, E.L.; Zoia, L. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 2009, 80, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Toba, K.; Yamamoto, H.; Yoshida, M. Crystallization of Cellulose Microfibrils in Wood Cell Wall by Repeated Dry-and-Wet Treatment, Using X-Ray Diffraction Technique. Cellulose 2013, 20, 633–643. [Google Scholar] [CrossRef]
- High, K.E.; Penkman, K.E. A Review of Analytical Methods for Assessing Preservation in Waterlogged Archaeological Wood and Their Application in Practice. Heritage Sci. 2020, 8, 83. [Google Scholar] [CrossRef]
- Han, L.; Tian, X.; Keplinger, T.; Zhou, H.; Li, R.; Svedström, K.; Burgert, I.; Yin, Y.; Guo, J. Even Visually Intact Cell Walls in Waterlogged Archaeological Wood Are Chemically Deteriorated and Mechanically Fragile: A Case of a 170 Year-Old Shipwreck. Molecules 2020, 25, 1113. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Shen, Z. Nanocellulose Based Filtration Membrane in Industrial Waste Water Treatment: A Review. Materials 2021, 14, 5398. [Google Scholar] [CrossRef]
- Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Davidde Petriaggi, B.; Romagnoli, M. Cellulose and lignin nano-scale consolidants for waterlogged archaeological wood. Front. Chem. 2020, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tu, X.; Ma, W.; Zhang, C.; Huang, H.; Varodi, A.M. Consolidation and Dehydration of Waterlogged Archaeological Wood from Site Huaguangjiao No.1. Forests 2022, 13, 1919. [Google Scholar] [CrossRef]
- Christensen, M.; Frosch, M.; Jensen, P.; Schnell, U.; Shashoua, Y.; Nielsen, O.F. Waterlogged Archaeological Wood—Chemical Changes by Conservation and Degradation. J. Raman Spectrosc. 2006, 37, 1171–1178. [Google Scholar] [CrossRef]
- Zhu, X.; Kaal, J.; Traoré, M.; Kuang, Y. Characterization of modern and waterlogged archaeological cypress (Glyptostrobus pensilis) wood: An analytical pyrolysis (Py-GC-MS and THM-GC-MS) and infrared spectroscopy (FTIR-ATR) study of within tree (radial) and decay-induced compositional variations. J. Anal. Appl. Pyrolysis 2024, 177, 106347. [Google Scholar]
- Han, L.; Guo, J.; Tian, X.; Jiang, X.; Yin, Y. Evaluation of PEG and sugars consolidated fragile waterlogged archaeological wood using nanoindentation and ATR-FTIR imaging. Int. Biodeterior. Biodegrad. 2022, 170, 105390. [Google Scholar] [CrossRef]
- Jiang, J.; Li, J.; Gao, Q. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Constr. Build. Mater. 2015, 75, 74–81. [Google Scholar] [CrossRef]
- Popescu, M.C.; Jones, D.; Krzisnik, D.; Humar, M. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FTIR spectroscopy and chemometric methods. J. Mol. Struct. 2020, 1200, 127–133. [Google Scholar] [CrossRef]
Wood Type → Parameters ↓ | Archaeological Wood | Recent Healthy Wood | p-Value | |
---|---|---|---|---|
Maximum moisture content (%) | 218.66 ± 7.96 1 | 102.61 ± 8.51 | <0.001 2 | |
Basic density (g/cm3) | 0.396 ± 0.015 | 0.765 ± 0.016 | <0.001 | |
Porosity(%) | 68.80 ± 1.18 | 43.89 ± 1.26 | <0.001 | |
Shrinkage rate (%) | Tangential | 8.67 ± 0.43 | 5.84 ± 0.46 | <0.001 |
Radial | 8.46 ± 0.56 | 3.80 ± 0.60 | <0.001 | |
Longitudinal | 2.23 ± 0.97 | 1.16 ± 0.91 | 0.063 | |
Volume | 17.46 ± 0.92 | 11.44 ± 0.99 | <0.001 |
Chemical Components | Archaeological Wood | Recent Healthy Wood |
---|---|---|
Holocellulose (%) | 48.09 ± 2.96 | 77.83 ± 3.51 |
Acid-insoluble lignin (%) | 39.41 ± 2.15 | 23.12 ± 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Ma, W.; Liu, X. Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship. Forests 2024, 15, 963. https://doi.org/10.3390/f15060963
Yang W, Ma W, Liu X. Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship. Forests. 2024; 15(6):963. https://doi.org/10.3390/f15060963
Chicago/Turabian StyleYang, Weiwei, Wanrong Ma, and Xinyou Liu. 2024. "Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship" Forests 15, no. 6: 963. https://doi.org/10.3390/f15060963
APA StyleYang, W., Ma, W., & Liu, X. (2024). Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship. Forests, 15(6), 963. https://doi.org/10.3390/f15060963