Seasonal Dynamics of Greenhouse Gas Emissions from Island-like Forest Soils in the Sanjiang Plain: Impacts of Soil Characteristics and Climatic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Gas Sampling and Flux Measurement
2.3. Soil Sampling and Measurement
2.4. Data Analysis
3. Results and Analysis
3.1. Characteristics of CO2, CH4, and N2O Fluxes in Soils of Different Forest Types
3.2. PCA of Soil Properties
3.3. RDA of Soil Properties and Greenhouse Gas Flux
3.4. Correlation Analysis and Linear Fitting of Soil Properties and Greenhouse Gas Flux
3.5. Greenhouse Gas Emissions and GWP of Different Forest Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neubauer, S.C.; Verhoeven, J.T.A. Wetland Effects on Global Climate: Mechanisms, Impacts, and Management Recommendations. In Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies; An, S., Verhoeven, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 238. [Google Scholar] [CrossRef]
- Song, C.; Sun, L.; Huang, Y.; Wang, Y.; Wan, Z. Carbon exchange in a freshwater marsh in the Sanjiang Plain, northeastern China. Agric. For. Meteorol. 2011, 151, 1131–1138. [Google Scholar] [CrossRef]
- Ma, Z.; Lu, M.; Jin, H.; Sheng, X.; Wei, H.; Yang, Q.; Qi, L.; Huang, J.; Chen, L.; Dou, X. Greenhouse gas emissions and environmental drivers in different natural wetland regions of China. Environ. Pollut. 2023, 330, 121754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, X.; An, Y. Fluctuating water level effects on soil greenhouse gas emissions of returning farmland to wetland. J. Soils Sediments 2020, 20, 3857–3866. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Ma, X.J.; Zhao, W.J.; Zhang, Z.J.; Sun, X.X. Impacts of reclamation marsh restoration on greenhouse gas emission in the Sanjiang Plain, China. J. Appl. Ecol. 2023, 34, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.K.; da Silveira, O.S.L.; Ross, M.S.; Miralles-Wilhelm, F. Water source utilization and foliar nutrient status differs between upland and flooded plant communities in wetland tree islands. Wetl. Ecol. Manag. 2010, 18, 343–355. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Lü, X.G.; Song, X.L. Mn content in soil of Sanjiang Plain under different land use. Huan Jing Ke Xue = Environ. Sci. 2011, 32, 3429–3434. [Google Scholar]
- Zhang, Y.; Song, C.; Wang, X.; Chen, N.; Ma, G.; Zhang, H.; Cheng, X.; Sun, D. How climate warming and plant diversity affect carbon greenhouse gas emissions from boreal peatlands: Evidence from a mesocosm study. J. Clean. Prod. 2023, 404, 136905. [Google Scholar] [CrossRef]
- Song, C.; Xu, X.; Tian, H.; Wang, Y. Ecosystem–atmosphere exchangeof CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob. Change Biol. 2009, 15, 692–705. [Google Scholar] [CrossRef]
- Teh, Y.A.; Silver, W.L.; Conrad, M.E. Oxygen effects on methane production and oxidation in humid tropical forest soils. Glob. Change Biol. 2005, 11, 1283–1297. [Google Scholar] [CrossRef]
- Chen, D.; Fu, X.; Wang, C.; Liu, X.; Li, H.; Shen, J.; Wang, Y.; Yong, L.; Wu, J. Nitrous Oxide Emissions from a Masson Pine Forest Soil in Subtropical Central China. Pedosphere 2015, 25, 263–274. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Agnelli, A.E. Influence of vegetation cover and soil features on CO2, CH4 and N2O fluxes in northern Finnish Lapland. Polar Sci. 2020, 24, 100531. [Google Scholar] [CrossRef]
- Yu, B.; Xu, W.; Yan, L.; Bao, H.; Yu, H. Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems. Plants 2022, 11, 2823. [Google Scholar] [CrossRef]
- Li, J.Y.; Xi, Y.; Zhao, J.F. Effects of soil moisture on methane uptake in a tropical forest of southern China. Acta Ecol. Sin. 2022, 42, 4978–4987. [Google Scholar]
- Yan, F. Effects of climate changes on net primary productivity variation in the marsh area of the Sanjiang Plain. Front. Ecol. Evol. 2022, 10, 1002397. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Li, Y. Soil Type and a Labile C Addition Regime Control the Temperature Sensitivity of Soil C and N Mineralization More than N Addition in Wetland Soils in China. Atmosphere 2020, 11, 1043. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, F.; Yu, L.L.; Xu, K.; Sun, Z.L.; Lu, X.G. Plant species diversity of the island forest in a marsh in the Sanjiang Plain, China. J. Plant Ecol. 2008, 32, 582–590. [Google Scholar]
- Kong, L.Y.; Yin, S.B.; Liu, J.P.; Liang, C. Distribution Characteristics of Soil Cation Exchange Capacity of Saucer-shaped Depressions to Island Forests in the Sanjiang Plain. Sci. Technol. Eng. 2021, 21, 8828–8833. [Google Scholar]
- Liang, C.; Yin, S.B.; Liu, J.P. Spatial distribution and ecological stoichiometric characteristics of nitrogen and phosphorus in soils from saucer-shaped depressions to island forests in the Sanjiang Plain. Acta Ecol. Sin. 2019, 39, 7679–7685. [Google Scholar]
- Davydov, D.K.; Dyachkova, A.V.; Fofonov, A.V.; Simonenkov, D.V.; Maksyutov, S.; Nakayama, T. Studying seasonal variations for methane and carbon dioxide fluxes from wetland ecosystems of the Bakchar bog in Tomsk region. In Proceedings of the 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 18 December 2019; Volume 11208, p. 1120870. [Google Scholar] [CrossRef]
- Kim, D.-G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Yang, J.; Shangguan, Z.; Torn, M.S. Response of soil greenhouse gas fluxes to warming: A global meta-analysis of field studies. Geoderma 2022, 419, 115865. [Google Scholar] [CrossRef]
- Han, H.; Li, C.; Liu, R.; Jian, J.; Abulimiti, M.; Yuan, P. Warming promotes accumulation of microbial- and plant-derived carbon in terrestrial ecosystems. Sci. Total Environ. 2023, 905, 166977. [Google Scholar] [CrossRef] [PubMed]
- Jungkunst, H.F.; Flessa, H.; Scherber, C.; Fiedler, S. Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol. Biochem. 2008, 40, 2047–2054. [Google Scholar] [CrossRef]
- Lang, M.; Cai, Z.; Chang, S.X. Effects of land use type and incubation temperature on greenhouse gas emissions from Chinese and Canadian soils. J. Soils Sediments 2011, 11, 15–24. [Google Scholar] [CrossRef]
- Valeria, M.; Mike, P.; Jo, S.; Jagadeesh, Y.; Georgios, X. Seasonal patterns of greenhouse gas emissions from a forest-to-bog restored site in northern Scotland: Influence of microtopography and vegetation on carbon dioxide and methane dynamics. Eur. J. Soil Sci. 2021, 72, 1332–1353. [Google Scholar]
- Liu, X.H.; Zhang, Y.; Dong, G.H.; Jiang, M. Difference in carbon budget from marshlands to transformed paddy fields in the Sanjiang Plain, Northeast China. Ecol. Eng. 2019, 137, 60–64. [Google Scholar] [CrossRef]
- Ho, A.; Ijaz, U.Z.; Janssens, T.K.S.; Ruijs, R.; Kim, S.Y.; de Boer, W.; Termorshuizen, A.; van der Putten, W.H.; Bodelier, P.L.E. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. GCB Bioenergy 2017, 9, 1707–1720. [Google Scholar] [CrossRef]
- Ye, X.H.; Han, B.; Li, W.; Zhang, X.C.; Zhang, Y.L.; Lin, X.G.; Zou, H.T. Effects of different irrigation methods on nitrous oxide emissions and ammonia oxidizers microorganisms in greenhouse tomato fields. Agric. Water Manag. 2018, 203, 115–123. [Google Scholar] [CrossRef]
- Maietta, C.E.; Monsaint-Queeney, V.; Wood, L.; Baldwin, A.H.; Yarwood, S.A. Plant litter amendments in restored wetland soils altered microbial communities more than clay additions. Soil Biol. Biochem. 2020, 147, 107846. [Google Scholar] [CrossRef]
- Wang, W.; Sardans, J.; Wang, C.; Zeng, C.; Tong, C.; Asensio, D.; Peñuelas, J. Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China. Atmos. Environ. 2017, 164, 458–467. [Google Scholar] [CrossRef]
- Keller, M.; Reiners, W.A. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob. Biogeochem. Cycles 1994, 8, 399–409. [Google Scholar] [CrossRef]
- Fang, H.J.; Yu, G.R.; Cheng, S.L.; Zhu, T.H.; Wang, Y.S.; Yan, J.H.; Wang, M.; Cao, M.; Zhou, M. Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils. Biogeosciences 2010, 7, 395–407. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, W.; Liu, Y.; Sha, L.; Song, Q.; Lin, Y.; Yu, G.; Zhang, J.; Zheng, X.; Fang, Y.; et al. Litter-derived nitrogen reduces methane uptake in tropical rainforest soils. Sci. Total Environ. 2022, 849, 157891. [Google Scholar] [CrossRef]
- Chen, H.; Yao, S.; Wu, N.; Wang, Y.; Luo, P.; Tian, J.; Gao, Y.; Sun, G. Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. J. Geophys. Res. 2008, 113, D12303. [Google Scholar] [CrossRef]
- Hirota, M.; Tang, Y.; Hu, Q.; Hirata, S.; Kato, T.; Mo, W.; Cao, G.; Mariko, S. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol. Biochem. 2004, 36, 737–748. [Google Scholar] [CrossRef]
- Priemé, A.; Christensen, S. Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol. Biochem. 1997, 29, 1165–1172. [Google Scholar] [CrossRef]
- Aronson, E.L.; Vann, D.R.; Helliker, B.R. Methane flux response to nitrogen amendment in an upland pine forest soil and riparian zone. J. Geophys. Res. 2012, 117, G03012. [Google Scholar] [CrossRef]
- Ding, W.X.; Cai, Z.C. Mechanism of methane oxidation by methanotrophs and effect of soil moisture content on their activity. Chin. J. Eco-Agric. 2003, 11, 94–97. [Google Scholar]
- Welch, B.; Gauci, V.; Sayer, E.J. Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition. Glob. Change Biol. 2019, 25, 361–372. [Google Scholar] [CrossRef]
- Lin, C.W.; Kao, Y.C.; Chou, M.C.; Wu, H.H.; Ho, C.W.; Lin, H.J. Methane Emissions from Subtropical and Tropical Mangrove Ecosystems in Taiwan. Forests 2020, 11, 470. [Google Scholar] [CrossRef]
- Wang, M.; Wu, J.; Lafleur, P.M.; Luan, J.; Chen, H.; Zhu, X. Temporal shifts in controls over methane emissions from a boreal bog. Agric. For. Meteorol. 2018, 262, 120–134. [Google Scholar] [CrossRef]
- Zhu, X.-Y.; Song, C.-C.; Guo, Y.-D.; Shi, F.-X.; Wang, L.-L. N2O emissions and its controlling factors from the peatlands in the Sanjiang Plain. China Environ. Sci. 2013, 33, 2228–2234. [Google Scholar]
- Sun, Z.G.; Liu, J.S.; Yang, J.S.; Mu, X.J.; Wang, L.L. N2O flux characteristics and emission contributions of Calamagrostis angustifolia wetland during growth and non-growth seasons. Acta Prataculturae Sin. 2009, 18, 242–247. [Google Scholar]
- Zhang, R.T.; Ni, H.W.; Liu, Y.N.; Fu, X.Y.; Wang, J.B. Response of greenhouse gas emission in the growing season to add and remove litter in Calamagrostis angustifolia Wetlands of Sanjiang Plain. Acta Sci. Circumst. 2020, 40, 1467–1475. [Google Scholar]
- Thomson, A.J.; Giannopoulos, G.; Pretty, J.; Baggs, E.M.; Richardson, D.J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. Lond B Biol. Sci. 2012, 367, 1157–1168. [Google Scholar] [CrossRef]
- Chapuis-lardy, L.; Wrage, N.; Metay, A.; Chotte, J.L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Change Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Wu, D.; Cárdenas, L.M.; Calvet, S.; Brüggemann, N.; Loick, N.; Liu, S.; Bol, R. The effect of nitrification inhibitor on N2O, NO and N2 emissions under different soil moisture levels in a permanent grassland soil. Soil Biol. Biochem. 2017, 113, 153–160. [Google Scholar] [CrossRef]
- Abdalla, M.; Jones, M.; Smith, P.; Williams, M. Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use Manag. 2009, 25, 376–388. [Google Scholar] [CrossRef]
- Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 2000, 32, 67–72. [Google Scholar] [CrossRef]
- Grosso, S.J.D.; Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Kulmala, A.E.; Phongpan, S. General model for N2O and N2 gas emissions from soils due to dentrification. Glob. Biogeochem. Cycles 2000, 14, 1045–1060. [Google Scholar] [CrossRef]
- Toma, Y.; Kimura, S.D.; Yamada, H.; Hirose, Y.; Fujiwara, K.; Kusa, K.; Hatano, R. Effects of environmental factors on temporal variation in annual carbon dioxide and nitrous oxide emissions from an unfertilized bare field on Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci. Plant Nutr. 2010, 56, 663–675. [Google Scholar] [CrossRef]
- Johannes, K.; David, T. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 2000, 81, 88–98. [Google Scholar] [CrossRef]
- Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.-A. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013, 7, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- Wells, N.S.; Baggs, E.M. Char amendments impact soil nitrous oxide production during ammonia oxidation. Soil Sci. Soc. Am. J. 2014, 78, 1656–1660. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, W.; Wang, K.; Qin, F.; Wang, W.; Dai, H.; Li, P. Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions. Glob. Change Biol. 2014, 20, 300–312. [Google Scholar] [CrossRef] [PubMed]
Trees | Shrub | Herb | |
---|---|---|---|
HJL | Acer pictum, Tilia amurensis, Betula platyphylla, Populus davidiana, Fraxinus mandshurica, Juglans mandshurica | Sambucus williamsii, Euonymus alatus, A. ginnala, Rosa acicularis, Corylus mandshurica, C. heterophylla, Lespedeza bicolor et al. | Stellaria radians, Anemone udensis, Paris verticillate, Polygonatum humile, Bupleurum longiradiatum, Campanula punctata, Dioscorea nipponica, Convallaria keiskei, Carex ussuriensis, C. quadriflora et al. |
MGL | Quercus Mongolic, T. amurensis, A. pictum, T. mandshurica, P. davidiana, B. dahurica | C. heterophylla, Eleutherococcus senticosus, E. alatus, Rhamnus diamantiaca, Berberis amurensis, L. bicolor et al. | Poa nemoralis, Vicia pseudo-orobus, P. odoratum, Adenophora tetraphylla, Lathyrus quinquenervius, Geranium dahuricum, S. media, Filipendula palmata, Dryopteris crassirhizoma et al. |
BHL | B. platyphylla, Alnus hirsute, P. davidiana | Spiraea salicifolia, Salix rosmarinifolia var. brachypoda et al. | Deyeuxia angustifolia, Thalictrum simplex, Rubia sylvatica, C. schmidtii, Equisetum sylvaticum, Potentilla fragarioides, Achillea ptarmicoides, Actaea asiatica, S. radians, Persicaria perfoliate, Lactuca sibirica et al. |
Soil Type | T (°C) | V (%) | SOC (g/kg) | TN (g/kg) | AN (g/kg) | pH | |
---|---|---|---|---|---|---|---|
HJL | Dark brown soil | 2.15–18.55 (9.83) | 24.89–51.21 (38.05) | 31.28–49.35 (40.06) | 3.25–5.2 (4.33) | 0.38–0.88 (0.61) | 4.26–5.32 (4.94) |
MGL | Dark brown soil | 2.12–18.49 (9.79) | 25.85–50.24 (39.04) | 39.58–71.28 (53.46) | 4.18–6.01 (5.12) | 0.51–0.87 (0.68) | 4.84–5.41 (5.12) |
BHL | Swampy meadow soil, dark brown meadow soil | 1.79–18.05 (9.27) | 26.15–55.62 (41.74) | 35.14–57.25 (41.74) | 3.98–5.65 (4.64) | 0.35–0.83 (0.58) | 4.56–5.05 (4.82) |
Forest Type | Gas | Equation | Adj R2 | p |
---|---|---|---|---|
HJL | CO2 | CO2 = 41.6T + 25.18 | 0.93 | <0.001 |
CH4 | CH4 = −4.85T + 1.49V − 31.49 | 0.87 | <0.001 | |
N2O | N2O = 1.95T − 0.44V + 10.18 | 0.8 | <0.001 | |
MGL | CO2 | CO2 = 39.04T + 70.32 | 0.86 | <0.001 |
CH4 | CH4 = −4.85T + 1.49V − 31.49 | 0.87 | <0.001 | |
N2O | N2O = 0.84T + 37.05AN − 20.4 | 0.79 | <0.001 | |
BHL | CO2 | CO2 = 38.45T − 8.94V − 9.56SOC + 258.85 | 0.92 | <0.001 |
CH4 | CH4 = −3.5T − 1.69SOC + 46.22pH − 120.66 | 0.78 | <0.001 | |
N2O | N2O = 1.63T + 12.95pH − 67.08 | 0.82 | <0.001 |
Forest Type | CO2 Cumulative Emissions /(kg·ha−1) | CH4 Cumulative Emissions /(kg·ha−1) | N2O Cumulative Emissions/(kg·ha−1) | GWP /(kg·ha−1) |
---|---|---|---|---|
HJL | 15,621.12 | −0.81 | 0.45 | 15,734.97 |
MGL | 16,286.76 | −0.84 | 0.47 | 16,405.82 |
BHL | 12,894.12 | −0.027 | 0.38 | 13,006.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Li, J.; Zhong, H.; Wang, Y.; Dong, J.; Yang, X. Seasonal Dynamics of Greenhouse Gas Emissions from Island-like Forest Soils in the Sanjiang Plain: Impacts of Soil Characteristics and Climatic Factors. Forests 2024, 15, 996. https://doi.org/10.3390/f15060996
Xu N, Li J, Zhong H, Wang Y, Dong J, Yang X. Seasonal Dynamics of Greenhouse Gas Emissions from Island-like Forest Soils in the Sanjiang Plain: Impacts of Soil Characteristics and Climatic Factors. Forests. 2024; 15(6):996. https://doi.org/10.3390/f15060996
Chicago/Turabian StyleXu, Nan, Jinbo Li, Haixiu Zhong, Yuan Wang, Juexian Dong, and Xuechen Yang. 2024. "Seasonal Dynamics of Greenhouse Gas Emissions from Island-like Forest Soils in the Sanjiang Plain: Impacts of Soil Characteristics and Climatic Factors" Forests 15, no. 6: 996. https://doi.org/10.3390/f15060996
APA StyleXu, N., Li, J., Zhong, H., Wang, Y., Dong, J., & Yang, X. (2024). Seasonal Dynamics of Greenhouse Gas Emissions from Island-like Forest Soils in the Sanjiang Plain: Impacts of Soil Characteristics and Climatic Factors. Forests, 15(6), 996. https://doi.org/10.3390/f15060996