Effects of Slope Position on Morphological, Anatomical, and Chemical Traits of Cunninghamia lanceolata (Lamb.) Hook. Fine Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Materials
2.1.1. Overview of the Study Area
2.1.2. Materials
2.2. Research Methods
2.2.1. Root Sample Collection
2.2.2. Determination of Morphological Traits of Fine Roots of Chinese Fir of Different Ranks
2.2.3. Determination of Anatomical Properties of Fine Roots of Chinese Fir of Different Ranks
2.2.4. Determination of Chemical Properties of Fine Roots of Chinese Fir of Different Ranks
2.3. Statistical Analysis
3. Results
3.1. Changes in Fine Root Morphological Traits of Chinese Fir at Different Slope Positions
3.2. Changes in Fine Root Anatomical Traits of Chinese Fir at Different Slope Positions
3.3. Changes in Chemical Properties of Fine Roots of Chinese Fir from Different Slope Positions
3.4. Relationship between Fine Root Morphological, Anatomical, and Chemical Properties of Chinese Fir
4. Discussion
4.1. Regulatory Mechanism of Slope Location on Soil Resource Acquisition Strategies of Chinese Fir Fine Roots
4.2. Slope Position Drives the Changes in the Intrinsic Relationships of Fine Root Traits of Chinese Fir
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.L.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Huang, L.; Khoso, M.A.; Wu, H.B. Fine root decomposition in forest ecosystems: An ecological perspective. Front. Plant Sci. 2023, 14, 1277510. [Google Scholar] [CrossRef]
- El Amrani, B. Exploring the importance of root architecture plasticity in plant adaptation to environmental constraints. Plant Species Biol. 2023, 38, 234–244. [Google Scholar] [CrossRef]
- Kong, D.L.; Wang, J.J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y. The root economics spectrum: Divergence of absorptive root strategies with root diameter. Biogeosci. Discuss. 2015, 12, 13041–13067. [Google Scholar]
- Han, M.; Chen, Y.; Li, R.; Yu, M.; Fu, L.; Li, S.F.; Su, J.R.; Zhu, B. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytol. 2022, 234, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Hou, E.Q.; Luo, Y.Q.; Kuang, Y.W.; Chen, C.R.; Lu, X.K.; Jiang, L.F.; Luo, X.Z.; Wen, D.Z. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Dakora, F.D.; Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil. 2002, 245, 35–47. [Google Scholar] [CrossRef]
- Lambers, H.; Ahmedi, I.; Berkowitz, O.; Dunne, C.; Finnegan, P.M.; Hardy, G.E.S.J.; Jost, R.; Laliberté, E.; Pearse, S.J.; Teste, F.P. Phosphorus nutrition of phosphorus-sensitive Australian native plants: Threats to plant communities in a global Biodiversity Hotspot. Conserv. Physiol. 2013, 1, cot010. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yao, X.D.; Cheng, H.Z.; Fan, A.L.; Lin, G.R.; Wang, X.H.; Yang, Y.S.; Chen, G.S. Changes in Chinese fir plantations root exuda-tion strategies seasonally and as tree age. For. Ecol. Manag. 2023, 545, 121239. [Google Scholar] [CrossRef]
- Xu, J.; Xie, S.; Han, A.; Rao, R.; Huang, G.; Chen, X.; Hu, J.; Liu, Q.; Yang, X.; Zhang, L. Forest Resources in China—The 9th National Forest Inventory; National Forestry and Grassland Administration: Beijing, China, 2019. [Google Scholar]
- FAO. Global Forest Resource Assessment 2020 Food and Agricultural Organisation of the United Nations 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Guo, J.H.; Feng, H.L.; Roberge, G.; Feng, L.; Pan, C.; McNie, P.; Yu, Y.C. The negative effect of Chinese fir (Cunninghamia lanceolata) monoculture plantations on soil physicochemical properties, microbial biomass, fungal communities, and enzymatic activities. For. Ecol. Manag. 2022, 519, 120297. [Google Scholar] [CrossRef]
- Teng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ding, Y. Effect of mixed forests of Chinese fir and Tsoong trees on soil properties. Pedosphere 1997, 8, 161–168. [Google Scholar]
- Wang, Y.; Liu, Z.H.; Tang, T.; Li, J.P. Analysis of the relative importance of stand structure and site conditions for the productivity, species diversity, and carbon sequestration of Cunninghamia lanceolata and Phoebe bournei mixed forests. Plants 2023, 12, 12081633. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Zhang, Y.T.; Wang, L.; Ge, S.Y. Forest conversion from pure to mixed Cunninghamia lanceolata plantations enhances soil multifunctionality, stochastic processes, and stability of bacterial networks in subtropical southern China. Plant Soil. 2023, 488, 411–429. [Google Scholar] [CrossRef]
- Liao, Y.C.; Fan, H.B.; Wei, X.H.; Wang, H.; Shen, F.; Hu, L.; Li, Y.Y.; Fang, H.Y.; Huang, R.Z. Shifting of the first-order root foraging strategies of Chinese fir (Cunninghamia lanceolata) under varied environmental conditions. Trees 2023, 37, 921–932. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Sun, J.; Yao, X.D.; Wang, X.H.; Huang, J.X.; Xiong, D.C.; Chen, G.S. Fine root nutrient foraging ability in relation to carbon availability along a chronosequence of Chinese fir plantations. Forest Ecol. Manag. 2022, 507, 120003. [Google Scholar] [CrossRef]
- Rashid, M.H.U.; Guo, H.L.; Zheng, S.S.; Li, L.; Ma, X.; Farooq, T.H.; Nawaz, M.F.; Gautam, N.P.; Wu, P. Effects of low phosphorus availability on root cambial activity, biomass production and root morphological pattern in two clones of Chinese fir. Forestry 2023, 96, 76–86. [Google Scholar] [CrossRef]
- He, N.P.; Li, Y.; Liu, C.C.; Xu, L.; Li, M.; Zhang, J.; Han, X.; Ye, Q.; Xiao, C. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends Ecol. Evol. 2020, 35, 908–918. [Google Scholar] [CrossRef] [PubMed]
- State Forestry Administration. Forest Soil Analysis Methods; Standards Press of China: Beijing, China, 2000. [Google Scholar]
- Pregitzer, K.S.; DeForest, J.L.; Burton, A.J.; Allen, M.F.; Ruess, R.W.; Hendrick, R.L. Fine root architecture of nine North American trees. Ecol. Monogr. 2002, 72, 293–309. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; De Deyn, G.B.; Johnson, D.; Klimešová, J.; et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Guo, D.L.; Xu, X.L.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; McCormack, M.L.; Hedin, L.O. Evolutionary history resolves global organization of root functional traits. Nature 2018, 555, 94–97. [Google Scholar] [CrossRef]
- Kong, D.L.; Wu, H.F.; Wang, M.; Simmons, M.; Lü, X.T.; Yu, Q.; Han, X.G. Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant Soil. 2010, 336, 209–217. [Google Scholar] [CrossRef]
- Medeiros, J.S.J.H.; Burns, J.H.; Nicholson, J.; Rogers, L.; Valverde-Barrantes, O. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron. Am. J. Bot. 2017, 104, 803–816. [Google Scholar] [CrossRef]
- Bauhus, J.; Khanna, P.K.; Menden, N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can. J. For. Res. 2000, 30, 1886–1894. [Google Scholar] [CrossRef]
- Ostonen, I.; Püttsepp, Ü.; Biel, C.; Alberton, O.; Bakker, M.R.; Lõhmus, K.; Majdi, H.; Metcalfe, D.; Olsthoorn, A.F.; Pronk, A.; et al. Specific root length as an indicator of environmental change. Plant Biosyst. 2007, 141, 426–442. [Google Scholar] [CrossRef]
- Miyatani, K.; Tanikawa, T.; Makita, N.; Hirano, Y. Relationships between specific root length and respiration rate of fine roots across stands and seasons in Chamaecyparis obtusa. Plant Soil. 2018, 423, 215–227. [Google Scholar] [CrossRef]
- Peng, L.; Xu, X.J.; Liao, X.F.; Liu, J.; Chen, J. Ampelocalamus luodianensis (Poaceae), a plant endemic to karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation. Glob. Ecol. Conserv. 2023, 41, e02374. [Google Scholar] [CrossRef]
- Cobacho, S.P.; Janssen, S.A.R.; Brekelmans, M.A.C.P.; van de Leemput, I.A.; Holmgren, M.; Christianen, M.J.A. High temperature and eutrophication alter biomass allocation of black mangrove (Avicennia germinans L.) seedlings. Mar. Environ. Res. 2024, 193, 106291. [Google Scholar] [CrossRef]
- Pan, F.J.; Qian, Q.; Liang, Y.M.; Wang, K.L.; Zhang, W. Spatial variations in fine root turnover, biomass, and necromass of two vegetation types in a Karst ecosystem, Southwestern China. Forests 2022, 13, 611. [Google Scholar] [CrossRef]
- Li, J.L.; Le, X.G.; Chen, X.P.; Niklas, K.J.; Li, X.; Wu, P.P.; Zhou, Y.J.; Zhong, Q.L.; Hu, D.D.; Cheng, D.L. The allocation of anatomical traits determines the trade-off between fine root resource acquisition-transport function. Oecologia 2023, 202, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.L.; Xia, M.X.; Wei, X.; Chang, W.J.; Liu, Y.; Wang, Z.Q. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 2008, 180, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.; Weigelt, A.; van der Plas, F.; Laughlin, D.C.; Kuyper, T.W.; Guerrero-Ramirez, N.; Valverde-Barrantes, O.J.; Bruelheide, H.; Freschet, G.T.; Iversen, C.M.; et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, J.; Valverde-Barrantes, O.J.; Kardol, P. A framework to assess the carbon supply– consumption balance in plant roots. New Phytol. 2020, 229, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Barrantes, O.J.; Authier, L.; Schimann, H.; Baraloto, C. Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. Am. J. Bot. 2021, 108, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, G.A.; Fei, J.; Rost, T.L.; Knipfer, T.; Matthews, M.A.; Shackel, K.A.; Walker, M.A.; Mcelrone, A. Water uptake along the length of grapevine fine roots: Developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol. 2013, 163, 1254–1265. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Fan, P.; Fu, S.; Zeng, H.; Guo, D.L. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees. Plant Soil. 2013, 363, 19–31. [Google Scholar] [CrossRef]
- Pant, H.; Tewari, A. Fine root biomass, productivity and turnover in two contrasting aspects in natural Chir Pine (Pinus roxburghii Sarg.) forests of Central Himalaya. Russ. J. Ecol. 2015, 46, 511–517. [Google Scholar] [CrossRef]
- Sun, L.J.; Ataka, M.; Han, M.G.; Han, Y.; Gan, D.; Xu, T.L.; Guo, Y.P.; Zhu, B. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytol. 2021, 229, 259–271. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Zhou, Z.Z.; Zhao, W.W.; Huang, G.H.; Liu, G.F.; Li, X.F.; Wu, J.D. Effect of slope position on leaf and fine root C, N and P stoichiometry and rhizosphere soil properties in Tectona grandis plantations. J. For. Res. 2023, 34, 1997–2009. [Google Scholar] [CrossRef]
- Shipley, B.; De Bello, F.; Cornelissen, J.H.C.; Laliberté, E.; Laughlin, D.C.; Reich, P.B. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia. 2016, 180, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B. The world-wide “fast-slow” plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Bernard-Verdier, M.; Navas, M.L.; Vellend, M.; Violle, C.; Fayolle, A.; Garnier, E. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 2012, 100, 1422–1433. [Google Scholar] [CrossRef]
- Kong, D.L.; Wang, J.J.; Wu, H.F.; Valverde-Barrantes, O.J.; Wang, R.L.; Zeng, H.; Kardol, P.; Zhang, H.Y.; Feng, Y.L. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 2019, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.L.; Ma, C.G.; Zhang, Q.; Li, L.; Chen, X.Y.; Zeng, H.; Guo, D.L. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 2014, 203, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Eissenstat, D.M.; Kucharski, J.M.; Zadworny, M.; Adams, T.S.; Koide, R.T. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol. 2015, 208, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.T.; Li, H.B.; Zhu, B.; Koide, R.T.; Eissenstat, D.M.; Guo, D.L. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 2015, 208, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, E. Below-ground frontiers in trait-based plant ecology. New Phytol. 2017, 213, 1597–1603. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, Y.T.; Yang, A.N.; Zhang, Y.; Lu, M.; Ge, S.; Qin, Y.B.; Zhang, J.H.; Tong, Z.K. Understory vegetation restoration improves soil physicochemical properties, enzymatic activity, and changes diazotrophic communities in Cunninghamia lanceolata plantations but depends on site history. Plant Soil. 2023, 492, 605–623. [Google Scholar] [CrossRef]
Slope | Carbon Content /g·kg−1 | Nitrogen Content/g·kg−1 | Phosphorus Content/g·kg−1 | Potassium Content/g·kg−1 | Calcium Content/g·kg−1 | Magnesium Content/g·kg−1 | Available Phosphorus Content/mg·kg−1 | Available Potassium Content/mg·kg−1 |
---|---|---|---|---|---|---|---|---|
Upper | 32.40 ± 2.34 a | 1.94 ± 0.33 c | 0.21 ± 0.05 c | 27.05 ± 0.91 c | 0.95 ± 0.12 a | 2.50 ± 1.17 a | 2.56 ± 0.45 b | 8.83 ± 0.68 c |
Middle | 27.78 ± 1.35 b | 2.42 ± 0.18 a | 0.22 ± 0.02 ab | 30.60 ± 1.20 b | 0.90 ± 0.46 a | 1.30 ± 0.49 b | 3.61 ± 0.94 a | 11.23 ± 0.20 b |
Lower | 24.75 ± 1.27 c | 2.20 ± 0.26 b | 0.23 ± 0.01 a | 32.32 ± 1.46 a | 0.57 ± 0.03 b | 2.25 ± 0.70 a | 2.15 ± 0.44 c | 12.34 ± 0.36 a |
Slope | pH | Soil Bulk Density/g·cm−3 | Soil Moisture Content/% | Capillary Moisture Capacity/% | Capillary Porosity/% | Noncapillary Porosity/% |
---|---|---|---|---|---|---|
Upper | 3.81 ± 0.06 b | 1.06 ± 0.08 a | 20.95 ± 3.58 a | 284.71 ± 48.85 a | 14.42 ± 1.22 b | 7.44 ± 0.94 b |
Middle | 4.14 ± 0.13 a | 0.82 ± 0.03 b | 23.26 ± 2.60 a | 265.75 ± 18.39 b | 18.33 ± 1.09 a | 6.48 ± 1.76 b |
Lower | 4.13 ± 0.10 a | 1.09 ± 0.09 a | 23.44 ± 3.45 a | 251.30 ± 33.35 b | 18.73 ± 1.94 a | 11.19 ± 2.40 a |
Influence Factor | Degree of Freedom/df | F Value | ||||
---|---|---|---|---|---|---|
Root Average Diameter | Root Tissue Density | Specific Surface Area | Specific Root Length | Biomass | ||
Slope | 2 | 2.754 * | 2.787 | 1.215 * | 2.295 * | 6.991 ** |
Root order | 2 | 20.648 ** | 0.560 * | 31.488 ** | 43.167 ** | 3.75 * |
Slope × root order | 4 | 1.003 * | 2.216 | 0.777 * | 0.484 * | 0.760 * |
Influence Factor | Degree of Freedom/df | Statistical Values/F | |||
---|---|---|---|---|---|
Vascular Bundle Diameter | Ratio of Stele to Root Diameter | Cortical Thickness | Cortical Ratio | ||
Slope | 2 | 23.527 ** | 11.493 ** | 4.080 * | 17.795 ** |
Root order | 2 | 1356.470 ** | 56.181 ** | 532.695 ** | 48.266 ** |
Slope × root order | 4 | 26.018 ** | 10.123 ** | 5.243 ** | 13.642 ** |
Influence Factor | Degree of Freedom/df | Statistical Values/F | |||||
---|---|---|---|---|---|---|---|
Carbon Content | Nitrogen Content | Phosphorus Content | Carbon Nitrogen Ratio | Carbon Phosphorus Ratio | Nitrogen Phosphorus Ratio | ||
Slope | 2 | 0.785 * | 18.032 ** | 0.898 * | 21.346 ** | 9.056 ** | 0.162 * |
Root order | 2 | 2.855 | 8.824 ** | 6.437 ** | 8.73 ** | 2.188 * | 0.78 |
Slope × root order | 4 | 1.545 | 0.596 | 2.019 | 1.86 | 0.264 | 0.475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liang, J.; Tian, Y.; Li, M.; Ma, X.; Liu, A.; Wu, P. Effects of Slope Position on Morphological, Anatomical, and Chemical Traits of Cunninghamia lanceolata (Lamb.) Hook. Fine Roots. Forests 2024, 15, 1081. https://doi.org/10.3390/f15071081
Li L, Liang J, Tian Y, Li M, Ma X, Liu A, Wu P. Effects of Slope Position on Morphological, Anatomical, and Chemical Traits of Cunninghamia lanceolata (Lamb.) Hook. Fine Roots. Forests. 2024; 15(7):1081. https://doi.org/10.3390/f15071081
Chicago/Turabian StyleLi, Linxin, Jing Liang, Yunlong Tian, Ming Li, Xiangqing Ma, Aiqin Liu, and Pengfei Wu. 2024. "Effects of Slope Position on Morphological, Anatomical, and Chemical Traits of Cunninghamia lanceolata (Lamb.) Hook. Fine Roots" Forests 15, no. 7: 1081. https://doi.org/10.3390/f15071081
APA StyleLi, L., Liang, J., Tian, Y., Li, M., Ma, X., Liu, A., & Wu, P. (2024). Effects of Slope Position on Morphological, Anatomical, and Chemical Traits of Cunninghamia lanceolata (Lamb.) Hook. Fine Roots. Forests, 15(7), 1081. https://doi.org/10.3390/f15071081