Pb Pollution Stress in Alnus cremastogyne Monitored by Antioxidant Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Conditions
2.2. Test Materials
2.2.1. Test Plants
2.2.2. Planting Soil and Container
2.3. Experimental Programs
2.4. Measurement Indicators and Methods
2.4.1. Measurement of Growth Indexes
- (1)
- Determination of plant height/ground diameter: We measured the height of the plant with a tape measure (accuracy 0.1 cm); we measured the diameter of the soil with a caliper in two directions perpendicular to each other from the root neck and took the average (precision 0.1 mm).
- (2)
- Measurement of biomass: we harvested the whole plant of Alnus cremastogyne saplings in aboveground and belowground parts, washed them with deionized water, and dried them at a constant temperature of 65 °C until reaching a constant weight, and we measured the biomass.
2.4.2. Determination of Nutrient Elements in each Organ of the Plant
2.4.3. Determination of Pb Content in Plant Organs and Soil
2.4.4. Determination of Physiological Indicators of Leaf Resistance
2.4.5. Data Statistics and Analysis
3. Results
3.1. The Growth and Pb Tolerance of Alnus cremastogyne Saplings
3.2. Changes in Resistance Physiology in Alnus cremastogyne Saplings
3.3. Pb Uptake and Accumulation Characteristics of Alnus cremastogyne Saplings
3.4. Characteristics of Nutrient Uptake by Alnus cremastogyne Saplings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sodango, T.H.; Li, X.; Sha, J.; Bao, Z. Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. J. Health Pollut. 2018, 8, 53–70. [Google Scholar] [CrossRef]
- Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar]
- Naja, G.M.; Volesky, B. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In Handbook of Advanced Industrial and Hazardous Wastes Management; CRC Press: Boca Raton, FL, USA, 2017; pp. 855–903. [Google Scholar]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; et al. Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Leal, M.F.C.; Catarino, R.I.; Pimenta, A.M.; Souto, M.R.S. The influence of the biometals Cu, Fe, and Zn and the toxic metals Cd and Pb on human health and disease. Trace Elem. Electrolytes 2023, 40, 1. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization: A green approach to contaminant containment. Adv. Agron. 2011, 112, 145–204. [Google Scholar]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Luo, Z.B.; He, J.; Polle, A.; Rennenberg, H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol. Adv. 2016, 34, 1131–1148. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, X.M.; Gao, P.; Song, G.L. Comparison of Tolerance and Enrichment Characteristic for Six Herbaceous Plant under Different Levels Cd Stress. Acta Agrestia Sin. 2021, 29, 1265. [Google Scholar]
- Yanqun, Z.; Yuan, L.; Jianjun, C.; Haiyan, C.; Li, Q.; Schvartz, C. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ. Int. 2005, 31, 755–762. [Google Scholar] [CrossRef]
- Yang, J.X.; Li, X.L.; Hu, Y.B.; Gao, L.M.; Yao, D.X. Enrichment Characteristics of heavy metal cadmium in woody plants system. Topola 2015, 64, 283–286. [Google Scholar]
- Yuan, X.Q.; Yu, N.Q.; Guo, Z.L.; Wang, S.C.; Tang, C.D.; Yang, H.J.; Liu, C.; Duan, C.Q. The accumulation characteristics of heavy metals in dominant herbaceous plants in the abandoned Pb-Zn mining area of Huize. J. Ecol. Rural Environ. 2022, 38, 399–408. [Google Scholar]
- Luo, Y.; Wu, Y.; Qiu, J.; Wang, H.; Yang, L. Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5 years of assisted revegetation. J. Soils Sediments 2019, 19, 702–715. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Zhang, Y.; Mou, Q.; Gou, Y.; Liu, K.; Huang, N.; Ouyang, C.; Hu, J.; Du, B. Simulation of potential suitable distribution of Alnus cremastogyne Burk. In China under climate change scenarios. Ecol. Indic. 2021, 133, 108396. [Google Scholar] [CrossRef]
- Jing, Y.; Cui, H.; Li, T.; Zhao, Z. Heavy metal accumulation characteristics of Nepalese alder (Alnus nepalensis) growing in a lead-zinc spoil heap, Yunnan, south-western China. iForest 2014, 7, 204–208. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y. Endogenous and exogenous lead in soils of Yangtze River Delta region, China: Identified by lead isotopic compositions and multi-elemental approaches. Environ. Earth Sci. 2011, 62, 1109–1115. [Google Scholar] [CrossRef]
- Freschet, G.T.; Pagès, L.; Iversen, C.M.; Comas, L.H.; Rewald, B.; Roumet, C.; Klimešová, J.; Zadworny, M.; Poorter, H.; Postma, J.A.; et al. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol. 2021, 232, 973–1122. [Google Scholar] [CrossRef]
- Zagatto, E.A.G.; Reis, B.F.; Krug, F.J. Isothermal distillation in flow injection analysis: Determination of total nitrogen in plant material. Anal. Chim. Acta 1979, 109, 45–54. [Google Scholar] [CrossRef]
- Isaac, R.A.; Kerber, J.D. Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. In Instrumental Methods for Analysis of Soils and Plant Tissue; Soil Science Society of America, Inc.: Madison, WI, USA, 1971; pp. 17–37. [Google Scholar]
- Beers, R., Jr.; Sizer, I.W. A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef]
- Donahue, J.L.; Okpodu, C.M.; Cramer, C.L.; Grabau, E.A.; Alscher, R.G. Responses of Antioxidants to Paraquat in Pea Leaves: Relationships to Resistance. Plant Physiol. 1997, 113, 249–257. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lim, J.-H.; Park, M.R.; Kim, Y.J.; Park, T.I.; Seo, Y.W.; Choi, K.G.; Yun, S.J. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Rep. 2005, 38, 218–224. [Google Scholar] [CrossRef]
- Merey, H.A.; Ramadan, N.K.; Diab, S.S.; Moustafa, A.A. Validated UPLC Method for the Determination of Guaiphenesin, Oxeladin Citrate, Diphenhydramine, and Sodium Benzoate in Their Quaternary Mixture Used in Treatment of Cough, in the Presence of Guaiphenesin-Related Substance (Guaiacol). Chem. Pap. 2018, 72, 2247–2254. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Xu, Z.; Wang, Y.; Teng, Z.; An, M.; Zhang, Y.; Zhu, W.; Xu, N.; Sun, G. Toxic Effects of Heavy Metals Pb and Cd on Mulberry (Morus alba L.) Seedling Leaves: Photosynthetic Function and Reactive Oxygen Species (ROS) Metabolism Responses. Ecotoxicol. Environ. Saf. 2020, 195, 110469. [Google Scholar]
- Alam, P.; Kohli, S.K.; Al Balawi, T.; Altalayan, F.H.; Alam, P.; Ashraf, M.; Bhardwaj, R.; Ahmad, P. Foliar Application of 24Epibrassinolide Improves Growth, Ascorbate-Glutathione Cycle, and Glyoxalase System in Brown Mustard (Brassica juncea (L.) Czern.) under Cadmium Toxicity. Plants 2020, 9, 1487. [Google Scholar] [CrossRef]
- Du, J.; Guo, Z.; Li, R.; Ali, A.; Guo, D.; Lahori, A.H.; Wang, P.; Liu, X.; Wang, X.; Zhang, Z. Screening of Chinese Mustard (Brassica juncea L.) Cultivars for the Phytoremediation of Cd and Zn Based on the Plant Physiological Mechanisms. Environ. Pollut. 2020, 261, 114213. [Google Scholar] [CrossRef]
- Noller, C.; Friesl-Hanl, W.; Hood-Nowotny, R.; Puschenreiter, M.; Watzinger, A. Effect of Chelant-Based Soil Washing and Post-Treatment on Pb, Cd, and Zn Bioavailability and Plant Uptake. Water Air Soil Pollut. 2021, 232, 405. [Google Scholar] [CrossRef]
- Tumber-Dávila, S.J.; Schenk, H.J.; Du, E.; Jackson, R.B. Plant sizes and shapes above and belowground and their interactions with climate. New Phytol. 2022, 235, 1032–1056. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.G.; Luo, L.M.; Tang, H.; Zhou, L. Cytotoxicity of malondialdehyde and cytoprotective effects of taurine via oxidative stress and PGC-1α signal pathway in C2C12 cells. Mol. Biol. 2018, 52, 532–542. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Sheveleva, E. Plant stress adaptations—Making metabolism move. Curr. Opin. Plant Biol. 1998, 1, 267–274. [Google Scholar] [CrossRef]
- Neill, S.; Desikan, R.; Hancock, J. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 2002, 5, 388–395. [Google Scholar] [CrossRef]
- Carvalho, M.E.; Castro, P.R.; Azevedo, R.A. Hormesis in Plants under Cd Exposure: From Toxic to Beneficial Element? J. Hazard. Mater. 2020, 384, 121434. [Google Scholar] [CrossRef]
- Del Rio, L.A.; Palma, J.M.; Sandalio, L.M.; Corpas, F.J.; Pastori, G.M.; Bueno, P.; López-Huertas, E. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans. 1996, 24, 434–438. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Daudi, A.; Butt, V.S.; Paul Bolwell, G. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 2012, 236, 765–779. [Google Scholar] [CrossRef]
- Jia, L.; Ma, H.; Guan, Y.; Zou, L.; Jiang, L.; Hang, Y.; Feng, X.; Ren, X.; Tian, Y.; Pan, H.; et al. Lead absorption capacity in different parts of plants and its influencing factors: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Yan, H.; Filardo, F.; Hu, X.; Zhao, X.; Fu, D. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environ. Sci. Pollut. Res. 2016, 23, 3758–3769. [Google Scholar] [CrossRef]
- Chen, G.; Sun, G.R.; Liu, A.P.; Zhou, W.D. Lead enrichment in different genotypes of rice grains. Food Chem. Toxicol. 2008, 46, 1152–1156. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Hedrich, R. Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem. Sci. 1989, 14, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Asher, C.J.; Blamey FP, C.; Auchterlonie, G.J.; Guo, Y.N.; Menzies, N.W. Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ. Sci. Technol. 2008, 42, 4595–4599. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Li, X.; Wang, X.; Zhang, K.; Wang, Y.; Kang, H.; Chen, G.; Lan, T.; Zhang, Z.; Yuan, S.; et al. Cadmium and lead mixtures are less toxic to the Chinese medicinal plant Ligusticum chuanxiong Hort. Than either metal alone. Ecotoxicol. Environ. Saf. 2020, 193, 110342. [Google Scholar] [CrossRef] [PubMed]
- Zimdahl, R.L.; McCreary, D.T.; Gwynn, S.M. Lead uptake by plants: The influence of lead source. Bull. Environ. Contam. Toxicol. 1978, 19, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Diwan, H.; Ahmad, A.; Iqbal, M. Uptake-related parameters as indices of phytoremediation potential. Biologia 2010, 65, 1004–1011. [Google Scholar] [CrossRef]
- Drozdova, I.; Alekseeva-Popova, N.; Dorofeyev, V.; Bech, J.; Belyaeva, A.; Roca, N. A comparative study of the accumulation of trace elements in Brassicaceae plant species with phytoremediation potential. Appl. Geochem. 2019, 108, 104377. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Kumar, N.; Bauddh, K.; Kumar, S.; Dwivedi, N.; Singh, D.P.; Barman, S.C. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol. Eng. 2013, 61, 491–495. [Google Scholar] [CrossRef]
- Tso, T.C.; McMurtrey, J.E., Jr.; Jeffrey, R.N. Mineral deficiency & organic constituents in tobacco plants. III. Plant growth & alkaloid contents related to gradual development of calcium or boron deficiency symptoms. Plant Physiol. 1962, 37, 804. [Google Scholar] [PubMed]
- Fernández-Escobar, R.; Guerreiro, M.; Benlloch, M.; Benlloch-González, M. Symptoms of nutrient deficiencies in olive trees and leaf nutrient concentration at which such symptoms appear. Sci. Hortic. 2016, 209, 279–285. [Google Scholar] [CrossRef]
- de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, M.; Ren, H.; Yu, J.; Wu, J.; Ma, X. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings. Ecotoxicol. Environ. Saf. 2017, 142, 59–68. [Google Scholar] [CrossRef] [PubMed]
Pb Treatment mg/kg | Plant Height Increment cm | Base Diameter Increment cm | Absorbing Root Biomass g Plant−1 | Transport Root BIOMASS g Plant−1 | Stem Biomass g Plant−1 | Branch Biomass g Plant−1 | Leaf Biomass g Plant−1 | Total Biomass g Plant−1 |
---|---|---|---|---|---|---|---|---|
0 | 48.60 ± 1.40 a | 2.40 ± 0.12 a | 14.37 ± 0.79 a | 10.41 ± 0.54 a | 106.30 ± 4.07 a | 25.06 ± 1.55 a | 18.28 ± 2.52 a | 174.41 ± 2.84 a |
50 | 53.50 ± 2.50 a | 2.50 ± 0.05 a | 11.92 ± 1.85 ab | 8.78 ± 1.37 ab | 96.71 ± 5.05 ab | 22.41 ± 3.99 ab | 16.17 ± 1.85 ab | 155.99 ± 9.64 ab |
100 | 34.38 ± 2.79 b | 2.19 ± 0.16 a | 10.82 ± 0.95 abc | 7.73 ± 0.62 ab | 93.43 ± 11.71 ab | 19.54 ± 1.99 ab | 14.49 ± 1.05 ab | 146.00 ± 14.59 ab |
200 | 34.00 ± 4.62 b | 1.73 ± 0.04 b | 9.94± 0.77 bc | 6.55 ± 1.24 b | 81.92 ± 7.43 ab | 18.98 ± 1.52 ab | 13.94 ± 1.88 ab | 131.32 ± 3.34 bc |
400 | 26.50 ± 1.50 b | 1.63 ± 0.13 b | 7.80 ± 1.05 c | 5.78 ± 0.63 b | 73.37 ± 7.38 b | 16.07 ± 0.89 b | 10.90 ± 0.80 b | 113.91 ± 8.24 c |
Pb Treatment mg/kg | H2O2 mmol/g | MDA μmol/g | POD U/g | SOD U/g | CAT U/g | Pro μg/g | SS mmol/g | SP mg/g |
---|---|---|---|---|---|---|---|---|
0 | 4.64 ± 0.61 b | 0.166 ± 0.014 c | 94.40 ± 3.02 b | 621.99 ± 12.54 b | 7.13 ± 0.89 b | 57.56 ± 4.05 c | 0.429 ± 0.017 c | 6.62 ± 0.63 b |
50 | 6.89 ± 0.75 ab | 0.189 ± 0.023 bc | 157.92 ± 36.30 a | 1137.44 ± 191.60 a | 17.00 ± 2.97 a | 75.52 ± 3.60 abc | 0.588 ± 0.034 ab | 10.70 ± 0.43 a |
100 | 7.21 ± 1.06 ab | 0.216 ± 0.014 ab | 182.94 ± 32.65 ab | 918.49 ± 128.49 ab | 12.59 ± 1.97 ab | 80.51 ± 10.05 ab | 0.687 ± 0.046 a | 11.98 ± 2.17 a |
200 | 7.45 ± 0.74 a | 0.223 ± 0.016 ab | 174.21 ± 17.69 ab | 794.29 ± 66.32 ab | 11.27 ± 4.73 ab | 63.15 ± 6.94 bc | 0.652 ± 0.085 a | 8.79 ± 0.50 ab |
400 | 9.02 ± 0.85 a | 0.240 ± 0.012 a | 121.00 ± 15.24 ab | 739.48 ± 154.19 ab | 10.97 ± 1.84 ab | 88.71 ± 7.01 a | 0.484 ± 0.018 bc | 8.69 ± 0.42 ab |
Pb Treatment mg/kg | Pb Content in Absorbing Root mg/kg | Pb Content in Transport Root mg/kg | Pb Content in Stem mg/kg | Pb Content in Branch mg/kg | Pb Content in Leaf mg/kg | Remnant Pb Content in Soil mg/kg |
---|---|---|---|---|---|---|
0 | 22.83 ± 6.97 d | 33.92 ± 5.93 d | 2.37 ± 1.24 d | 4.60 ± 2.12 ab | 2.76 ± 0.43 b | 45.40 ± 4.41 e |
50 | 516.82 ± 55.46 d | 211.95 ± 21.88 c | 8.27 ± 2.61 cd | 3.56 ± 0.85 b | 5.61 ± 0.89 b | 230.83 ± 7.21 d |
100 | 1273.75 ± 275.94 c | 503.29 ± 49.87 b | 16.56 ± 3.73 bc | 3.00 ± 0.55 b | 8.52 ± 2.38 b | 367.02 ± 16.68 c |
200 | 1947.13 ± 199.10 b | 841.19 ± 66.04 a | 22.47 ± 5.23 b | 4.75 ± 0.45 ab | 12.22 ± 5.48 b | 592.29 ± 10.55 b |
400 | 2842.83 ± 157.26 a | 911.27 ± 56.91 a | 44.10 ± 1.62 a | 7.78 ± 2.01 a | 43.20 ± 24.17 a | 924.26 ± 44.65 a |
Pb Treatment mg/kg | Absorbing Root BCF | Transport Root BCF | Stem BCF | Branch BCF | Plant BCF | Plant TF |
---|---|---|---|---|---|---|
0 | 0.49 ± 0.14 b | 0.79 ± 0.21 b | 0.049 ± 0.021 a | 0.103 ± 0.049 a | 0.063 ± 0.012 a | 0.98 ± 0.12 a |
50 | 2.26 ± 0.29 a | 0.92 ± 0.10 ab | 0.036 ± 0.011 a | 0.015 ± 0.004 b | 0.025 ± 0.005 ab | 0.35 ± 0.04 b |
100 | 3.52 ± 0.81 a | 1.39 ± 0.18 a | 0.045 ± 0.010 a | 0.008 ± 0.002 b | 0.024 ± 0.007 b | 0.25 ± 0.05 b |
200 | 3.29 ± 0.35 a | 1.42 ± 0.11 a | 0.038 ± 0.009 a | 0.008 ± 0.001 b | 0.021 ± 0.009 b | 0.23 ± 0.02 b |
400 | 3.09 ± 0.32 a | 0.99 ± 0.11 ab | 0.048 ± 0.001 a | 0.009 ± 0.003 b | 0.049 ± 0.029 ab | 0.27 ± 0.02 b |
Nutrient Elements | Plant Organs | Pb Treatment mg/kg | ||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 200 | 400 | ||
N (g/kg) | Absorbing root | 7.07 ± 0.15 a | 6.32 ± 0.60 a | 6.08 ± 0.23 a | 6.90 ± 0.79 a | 7.81 ± 0.72 a |
Transport root | 3.53 ± 0.87 b | 2.79 ± 0.29 b | 3.46 ± 0.42 b | 4.17 ± 0.18 b | 7.08 ± 0.21 a | |
Trunk | 3.09 ± 0.71 a | 1.58 ± 0.37 ab | 1.59 ± 0.16 ab | 1.14 ± 0.40 b | 2.52 ± 0.76 ab | |
Branch | 3.78 ± 0.85 a | 3.67 ± 0.96 a | 2.55 ± 0.72 a | 3.26 ± 0.71 a | 4.45 ± 0.05 a | |
Leaf | 11.91 ± 2.96 a | 7.24 ± 1.23 a | 12.34 ± 1.84 a | 10.11 ± 0.95 a | 9.95 ± 0.22 a | |
P (g/kg) | Absorbing root | 1.02 ± 0.16 b | 1.15 ± 0.10 ab | 1.16 ± 0.08 ab | 1.03 ± 0.13 ab | 1.44 ± 0.05 a |
Transport root | 0.77 ± 0.03 a | 0.88 ± 0.13 a | 0.83 ± 0.05 a | 0.75 ± 0.02 a | 0.75 ± 0.04 a | |
Trunk | 0.70 ± 0.04 a | 0.67 ± 0.04 a | 0.62 ± 0.05 a | 0.64 ± 0.05 a | 0.56 ± 0.05 a | |
Branch | 0.81 ± 0.05 a | 0.97 ± 0.10 a | 0.89 ± 0.05 a | 0.94 ± 0.10 a | 0.78 ± 0.01 a | |
Leaf | 1.27 ± 0.19 a | 0.76 ± 0.09 b | 0.78 ± 0.04 b | 0.67 ± 0.06 b | 0.82 ± 0.18 b | |
K (g/kg) | Absorbing root | 1.27 ± 0.19 a | 0.76 ± 0.09 b | 0.78 ± 0.04 b | 0.67 ± 0.06 b | 0.82 ± 0.18 b |
Transport root | 41.96 ± 5.15 a | 55.91 ± 6.84 a | 49.50 ± 7.04 a | 51.69 ± 4.01 a | 43.58 ± 1.51 a | |
Trunk | 33.08 ± 3.22 b | 45.37 ± 3.21 a | 43.97 ± 2.03 a | 43.42 ± 1.79 a | 39.33 ± 4.40 ab | |
Branch | 45.85 ± 4.93 a | 49.18 ± 1.56 a | 54.45 ± 2.03 a | 57.11 ± 4.44 a | 51.49 ± 1.32 a | |
Leaf | 108.49 ± 23.63 a | 66.30 ± 4.81 b | 66.28 ± 5.76 b | 69.03 ± 5.17 b | 73.10 ± 18.84 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Hu, H.; Gao, S.; Chen, G.; Zhang, C.; Deng, W.; Li, C. Pb Pollution Stress in Alnus cremastogyne Monitored by Antioxidant Enzymes. Forests 2024, 15, 1100. https://doi.org/10.3390/f15071100
Zhao J, Hu H, Gao S, Chen G, Zhang C, Deng W, Li C. Pb Pollution Stress in Alnus cremastogyne Monitored by Antioxidant Enzymes. Forests. 2024; 15(7):1100. https://doi.org/10.3390/f15071100
Chicago/Turabian StyleZhao, Jiaheng, Hongling Hu, Shun Gao, Gang Chen, Chenghao Zhang, Wen Deng, and Chuang Li. 2024. "Pb Pollution Stress in Alnus cremastogyne Monitored by Antioxidant Enzymes" Forests 15, no. 7: 1100. https://doi.org/10.3390/f15071100
APA StyleZhao, J., Hu, H., Gao, S., Chen, G., Zhang, C., Deng, W., & Li, C. (2024). Pb Pollution Stress in Alnus cremastogyne Monitored by Antioxidant Enzymes. Forests, 15(7), 1100. https://doi.org/10.3390/f15071100