Stand Age and Climate Change Effects on Carbon Increments and Stock Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. The Model
2.3. Virtual Stands, Model Runs, and Results Evaluation
3. Results
Effect of Age Classes and Climate Change on Total Carbon Woody Stock and Increments
4. Discussion
Age-Dependent Impacts of Climate Change on Forests’ Increment and C-Stocks
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Favero, A.; Mendelsohn, R.; Sohngen, B.; Stocker, B. Assessing the long-term interactions of climate change and timber markets on forest land and carbon storage. Environ. Res. Lett. 2021, 16, 014051. [Google Scholar] [CrossRef]
- Vangi, E.; D’Amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; McRoberts, R.E.; Chirici, G. The effect of forest mask quality in the wall-to-wall estimation of growing stock volume. Remote Sens. 2021, 13, 1038. [Google Scholar] [CrossRef]
- Noce, S.; Collalti, A.; Valentini, R.; Santini, M. Hot spot maps of forest presence in the Mediterranean basin. iForest Biogeosci. For. 2016, 9, 766. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Y.; Lei, L.; Terrer, C.; Huntingford, C.; Peñuelas, J.; Xu, H.; Piao, S. CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land. Glob. Chang. Biol. 2023, 29, 4313–4326. [Google Scholar] [CrossRef]
- Roebroek, C.T.J.; Duveiller, G.; Seneviratne, S.I.; Davin, E.L.; Cescatti, A. Releasing global forests from human management: How much more carbon could be stored? Science 2023, 380, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Duffy, K.A.; Schwalm, C.R.; Arcus, V.L.; Koch, G.W.; Liang, L.L.; Schipper, L.A. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 2021, 7, eaay1052. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Verkerk, P.J.; Schelhaas, M.; González-Olabarria, J.R.; Trasobares, A.; Cienciala, E. Climate-Smart Forestry: Mitigation Impacts in Three European Regions; From Science to Policy 6; European Forest Institute: Joensuu, Finland, 2018. [Google Scholar]
- Wang, X.; Pederson, N.; Chen, Z.; Lawton, K.; Zhu, C.; Han, S. Recent rising temperatures drive younger and southern Korean pine growth decline. Sci. Total Environ. 2019, 649, 1105–1116. [Google Scholar] [CrossRef]
- Gregor, K.; Krause, A.; Reyer, C.P.O.; Knoke, T.; Meyer, B.F.; Suvanto, S.; Rammig, A. Quantifying the impact of key factors on the carbon mitigation potential of managed temperate forests. Carbon Balance Manag. 2024, 19, 10. [Google Scholar] [CrossRef]
- Vangi, E.; Dalmonech, D.; Cioccolo, E.; Marano, G.; Bianchini, L.; Puchi, P.F.; Grieco, E.; Cescatti, A.; Colantoni, A.; Chirici, G.; et al. Stand age diversity and climate change affect forests’ resilience and stability, although unevenly. bioRxiv 2023. [Google Scholar] [CrossRef]
- Erb, K.; Haberl, H.; Le Noë, J.; Tappeiner, U.; Tasser, E.; Gingrich, S. Changes in perspective needed to forge ‘no-regret’ forest-based climate change mitigation strategies. GCB Bioenergy 2022, 14, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Dalmonech, D.; Marano, G.; Amthor, J.; Cescatti, A.; Lindner, M.; Trotta, C.; Collalti, A. Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to forest management. Agric. For. Meteorol. 2022, 327, 109203. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Miller, A.D.; Mohan, J.E.; Hudiburg, T.W.; Duval, B.D.; Delucia, E.H. Altered dynamics of forest recovery under a changing climate. Glob. Chang. Biol. 2013, 19, 2001–2021. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.G.; Binkley, D.; Fownes, J.H. Age-related decline in forest productivity: Pattern and process. Adv. Ecol. Res. 1997, 27, 213–262. [Google Scholar] [CrossRef]
- Goulden, M.L.; McMillan, A.M.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B.P. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Chang. Biol. 2011, 17, 855–871. [Google Scholar] [CrossRef]
- Collalti, A.; Tjoelker, M.G.; Hoch, G.; Mäkelä, A.; Guidolotti, G.; Heskel, M.; Petit, G.; Ryan, M.G.; Battipaglia, G.; Prentice, I.C. Plant respiration: Controlled by photosynthesis or biomass? Glob. Chang. Biol. 2020, 26, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Collalti, A.; Ibrom, A.; Stockmarr, A.; Cescatti, A.; Alkama, R.; Fernandez-Martínez, M.; Matteucci, G.; Sitch, S.; Friedlingstein, P.; Ciais, P.; et al. Forest production efficiency increases with growth temperature. Nat. Commun. 2020, 11, 5322. [Google Scholar] [CrossRef] [PubMed]
- FOREST EUROPE. State of Europe’s Forests 2018; 2018. [Google Scholar]
- FOREST EUROPE. State of Europe’s Forests 2020; 2020; Available online: https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf (accessed on 23 May 2024).
- Collalti, A.; Marconi, S.; Ibrom, A.; Trotta, C.; Anav, A.; D’Andrea, E.; Matteucci, G.; Montagnani, L.; Gielen, B.; Mammarella, I.; et al. Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for ten European forest sites. Geosci. Model Dev. 2016, 9, 479–504. [Google Scholar] [CrossRef]
- Collalti, A.; Dalmonech, D.; Vangi, E.; Marano, G.; Puchi, P.F.; Morichetti, M.; Saponaro, V.; Orrico, M.R.; Grieco, E. Monitoring and Predicting Forest Growth and Dynamics; CNR Edizioni: Rome, Italy, 2024; ISBN 978-88-8080-655-4. [Google Scholar] [CrossRef]
- Collalti, A.; Trotta, C.; Keenan, T.F.; Ibrom, A.; Bond-Lamberty, B.; Grote, R.; Vicca, S.; Reyer, C.P.O.; Migliavacca, M.; Veroustraete, F.; et al. Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. J. Adv. Model. Earth Syst. 2018, 10, 2427–2452. [Google Scholar] [CrossRef]
- Mahnken, M.; Cailleret, M.; Collalti, A.; Trotta, C.; Biondo, C.; D’Andrea, E.; Dalmonech, D.; Marano, G.; Mäkelä, A.; Minunno, F.; et al. Accuracy, realism and general applicability of European forest models. Glob. Chang. Biol. 2022, 28, 6921–6943. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; Edmonds, J.; Hibbard, K. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Silveyra Gonzalez, R.; Dolos, K.; Hartig, F.; Hauf, Y.; Noack, M.; Lasch-Born, P.; Rötzer, T.; Pretzsch, H.; Meesenburg, H.; et al. The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth Syst. Sci. Data 2020, 12, 1295–1320. [Google Scholar] [CrossRef]
- Vacchiano, G.; Magnani, F.; Collalti, A. Modeling Italian forests: State of the art and future challenges. iForest 2012, 5, 113–120. [Google Scholar] [CrossRef]
- Collalti, A.; Perugini, L.; Santini, M.; Chiti, T.; Nolè, A.; Matteucci, G.; Valentini, R. A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecol. Model. 2014, 272, 362–378. [Google Scholar] [CrossRef]
- Farquhar, G.; von Caemmerer, S.; Berry, J. A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- de Pury, D.G.G.; Farquhar, G.D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 1997, 20, 537–557. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Singsaas, E.L.; Pimentel, C.A.R.L.O.S.; Portis Jr, A.R.; Long, S.P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 2001, 24, 253–259. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Calfapietra, C.A.R.L.; Davey, P.A.; Wittig, V.E.; Scarascia-Mugnozza, G.E.; Raines, C.A.; Long, S.P. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol. 2003, 159, 609–621. [Google Scholar] [CrossRef]
- Kattge, J.; Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant Cell Environ. 2007, 30, 1176–1190. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N. Mechanism linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef]
- Rowland, L.; da Costa, A.C.L.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J.; Oliveira, A.A.R.; Pullen, A.M.; Doughty, C.E.; Metcalfe, D.B.; Vasconcelos, S.S.; et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 2015, 528, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Collalti, A.; Biondo, C.; Buttafuoco, G.; Maesano, M.; Caloiero, T.; Lucà, F.; Pellicone, G.; Ricca, N.; Salvati, R.; Veltri, A.; et al. Simulation, calibration and validation protocols for the model 3D-CMCC-CNR-FEM: A case study in the Bonis’ watershed (Calabria), Italy. For. J. Silvic. For. Ecol. 2017, 14, 247–256. [Google Scholar] [CrossRef]
- Merganičová, K.; Merganič, J.; Lehtonen, A.; Vacchiano, G.; Sever, M.Z.O.; Augustynczik, A.L.D.; Grote, R.; Kyselová, I.; Mäkelä, A.; Yousefpour, R.; et al. Forest carbon allocation modelling under climate change. Tree Physiol. 2019, 39, 1937–1960. [Google Scholar] [CrossRef] [PubMed]
- Kira, T.; Shidei, T. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn. J. Ecol. 1967, 17, 70–87. [Google Scholar]
- Odum, E.P. The Strategy of Ecosystem Development: An understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science 1969, 164, 262–270. [Google Scholar] [CrossRef]
- Tang, J.; Luyssaert, S.; Richardson, A.D.; Kutsch, W.; Janssens, I.A. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl. Acad. Sci. USA 2014, 111, 8856–8860. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, A.; Valentine, H. The ratio of NPP to GPP: Evidence of change over the course of stand development. Tree Physiol. 2000, 21, 1015–1030. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Anderson, K.J.; Allen, A.P.; Gillooly, J.F.; Brown, J.H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 2006, 9, 673–682. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Leavitt, S.M.; Gibbs, D.; Harris, N.L.; Lister, K.; Anderson-Teixeira, K.J.; Briggs, R.D.; Chazdon, R.L.; Crowther, T.W.; Ellis, P.W.; et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 2020, 585, 545–550. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Herrmann, V.; Morgan, R.B.; Bond-Lamberty, B.; Cook-Patton, S.C.; E Ferson, A.; Muller-Landau, H.C.; Wang, M.M. Carbon cycling in mature and regrowth forests globally. Environ. Res. Lett. 2021, 16, 053009. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.; Wang, X.; Xiao, W.; Chen, L.; Li, S.; Sun, H.; Deng, X.; Forrester, D.I.; Zeng, L.; et al. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 2019, 107, 2266–2277. [Google Scholar] [CrossRef]
- Ullah, F.; Gilani, H.; Sanaei, A.; Hussain, K.; Ali, A. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For. Ecol. Manag. 2021, 486, 118984. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, G.-E.; Lee, H.-I.; Lee, C.-B. Stand age-driven tree size variation and stand type regulate aboveground biomass in alpine-subalpine forests, South Korea. Sci. Total. Environ. 2024, 915, 170063. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; Barka, I.; Kulla, L.; Bucha, T.; Sedmák, R.; Trombik, J. Sustainability of forest management in a Central European mountain forest: The role of climate change. Reg. Environ. Chang. 2015, 17, 65–77. [Google Scholar] [CrossRef]
- Dymond, C.C.; Beukema, S.; Nitschke, C.R.; Coates, K.D.; Scheller, R.M. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences 2016, 13, 1933–1947. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Arcangeli, C.; Bielak, K.; Dudzinska, M.; Forrester, D.I.; Klädtke, J.; Kohnle, U.; Ledermann, T.; Matthews, R.; et al. Forest growth in Europe shows diverging large regional trends. Sci. Rep. 2023, 13, 15373. [Google Scholar] [CrossRef] [PubMed]
- Krejza, J.; Cienciala, E.; Světlík, J.; Bellan, M.; Noyer, E.; Horáček, P.; Štěpánek, P.; Marek, M.V. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees 2021, 35, 103–119. [Google Scholar] [CrossRef]
- del Castillo, E.M.; Zang, C.S.; Buras, A.; Hacket-Pain, A.; Esper, J.; Serrano-Notivoli, R.; Hartl, C.; Weigel, R.; Klesse, S.; de Dios, V.R.; et al. Climate-change-driven growth decline of European beech forests. Commun. Biol. 2022, 5, 163. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yuan, D.; Zhu, L.; Li, Z.; Wang, X. Long-term changes in radial growth of seven tree species in the mixed broadleaf-Korean pine forest in Northeast China: Are deciduous trees favored by climate change? J. For. Res. 2024, 35, 70. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef] [PubMed]
- Hogg, E.H.; Michaelian, M.; Hook, T.I.; Undershultz, M.E. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Glob. Chang. Biol. 2017, 23, 5297–5308. [Google Scholar] [CrossRef]
- Reyer, C.P.O. Forest Productivity Under Environmental Change—A Review of Stand-Scale Modeling Studies. Curr. For. Rep. 2015, 1, 53–68. [Google Scholar] [CrossRef]
- Terrer, C.; Vicca, S.; Hungate, B.; Phillips, R.P.; Prentice, I.C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 2016, 353, 72–74. [Google Scholar] [CrossRef]
Name | Species | Lat | Long | Aspect | Elevation | Slope | Years of Obs. | DBH (cm) | Height (m) | BA (m2 ha−1) | Age | Tree Density (ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bílý Krìz | Picea abies | 49.3 | 18.32 | 180 | 875 | 12.5 | 1997–2015 | 8.16–20.47 | 6.26–15.26 | 10.33–36.96 | 16–34 | 2408–1252 |
Hyytiälä | Pinus sylvestris | 61.85 | 24.29 | 180 | 185 | 2 | 1995–2011 | 15.89–20.58 | 12.61–18.62 | 12.64–18.33 | 34–50 | 870–684 |
Sorø | Fagus sylvatica | 55.49 | 11.64 | - | 40 | 0 | 1994–2017 | 28.99–48.25 | 24.23–31.15 | 18.50–29.76 | 62–87 | 407–199 |
Site | Source | Years | Tmax (°C) | Tmean (°C) | Tmin (°C) | P (mm) | RH (%) | R (J cm−2) |
---|---|---|---|---|---|---|---|---|
Bílý Krìz | Local | 2000–2008 | 11.5 | 7.36 | 3.8 | 1434.56 | 81.99 | 378 774.86 |
Hyytiälä | Local | 1996–2014 | 7.4 | 4.36 | 1.13 | 604.01 | 77.95 | 309 628.86 |
Sorø | Local | 1996–2012 | 10.66 | 8.26 | 5.91 | 760.52 | 82.95 | 360 687.83 |
Scenario | Scenario | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NoCC | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | NoCC | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | ||
Age | TCWS (Mg Cha−1) | MAI (m3 ha−1) | |||||||||
CZ-BK1 | 12 | 72.22 | 69.92 | 65.04 | 70.42 | 65.93 | 4.89 | 4.75 | 4.57 | 4.80 | 4.63 |
16 | 75.71 | 73.60 | 73.20 | 74.10 | 71.88 | 5.03 | 4.86 | 4.67 | 4.91 | 4.72 | |
24 | 86.53 | 84.47 | 84.06 | 85.02 | 82.70 | 4.73 | 4.60 | 4.41 | 4.63 | 4.45 | |
36 | 97.46 | 95.37 | 95.00 | 96.13 | 93.64 | 4.30 | 4.19 | 4.01 | 4.22 | 4.07 | |
48 | 101.76 | 99.69 | 99.33 | 91.00 | 99.58 | 3.81 | 3.71 | 3.71 | 3.74 | 3.68 | |
60 | 110.19 | 108.17 | 107.88 | 99.34 | 107.00 | 3.58 | 3.51 | 3.50 | 3.53 | 3.47 | |
72 | 118.19 | 116.00 | 115.64 | 117.06 | 114.55 | 3.42 | 3.35 | 3.34 | 3.37 | 3.31 | |
84 | 121.56 | 119.38 | 119.04 | 120.58 | 117.50 | 3.18 | 3.12 | 3.11 | 3.14 | 3.08 | |
96 | 120.19 | 118.12 | 117.98 | 119.70 | 116.90 | 2.88 | 2.83 | 2.83 | 2.85 | 2.80 | |
108 | 126.78 | 121.26 | 124.28 | 117.57 | 112.33 | 2.74 | 2.70 | 2.70 | 2.71 | 2.66 | |
120 | 145.50 | 124.43 | 142.41 | 135.02 | 127.84 | 2.72 | 2.69 | 2.68 | 2.69 | 2.65 | |
FI-Hyy | 14 | 66.42 | 66.62 | 67.39 | 68.49 | 66.98 | 1.91 | 1.93 | 1.95 | 1.99 | 1.94 |
28 | 79.83 | 79.00 | 79.73 | 81.05 | 79.37 | 2.21 | 2.19 | 2.21 | 2.25 | 2.20 | |
36 | 104.34 | 102.42 | 103.17 | 104.75 | 102.86 | 3.20 | 3.14 | 3.16 | 3.21 | 3.15 | |
42 | 89.82 | 88.55 | 89.35 | 90.79 | 89.08 | 2.35 | 2.31 | 2.33 | 2.37 | 2.33 | |
56 | 118.76 | 116.62 | 117.57 | 119.20 | 117.36 | 3.20 | 3.14 | 3.17 | 3.21 | 3.17 | |
70 | 119.29 | 117.43 | 118.61 | 120.25 | 118.65 | 2.91 | 2.86 | 2.89 | 2.92 | 2.89 | |
84 | 125.92 | 123.95 | 125.19 | 126.85 | 125.27 | 2.76 | 2.72 | 2.74 | 2.77 | 2.74 | |
98 | 133.33 | 131.06 | 132.29 | 134.12 | 132.33 | 2.66 | 2.62 | 2.64 | 2.67 | 2.64 | |
112 | 141.29 | 138.87 | 140.00 | 141.92 | 140.19 | 2.57 | 2.53 | 2.55 | 2.57 | 2.55 | |
126 | 148.26 | 145.43 | 146.69 | 148.63 | 146.91 | 2.49 | 2.45 | 2.47 | 2.49 | 2.47 | |
140 | 155.77 | 153.11 | 154.50 | 156.52 | 154.79 | 2.47 | 2.43 | 2.45 | 2.47 | 2.45 | |
DK-Sor | 14 | 98.53 | 107.89 | 110.48 | 109.94 | 113.32 | 2.46 | 2.72 | 2.79 | 2.77 | 2.86 |
28 | 110.94 | 120.06 | 122.68 | 122.18 | 125.53 | 2.60 | 2.86 | 2.92 | 2.90 | 2.99 | |
42 | 113.56 | 122.68 | 125.31 | 124.82 | 128.16 | 2.54 | 2.78 | 2.85 | 2.83 | 2.92 | |
56 | 115.97 | 125.07 | 127.73 | 127.23 | 130.58 | 2.52 | 2.76 | 2.82 | 2.80 | 2.89 | |
70 | 116.15 | 125.14 | 127.79 | 127.30 | 130.62 | 2.47 | 2.69 | 2.75 | 2.73 | 2.81 | |
76 | 120.65 | 130.45 | 133.16 | 132.55 | 136.05 | 2.76 | 3.00 | 3.06 | 3.04 | 3.13 | |
84 | 124.68 | 133.99 | 136.65 | 136.14 | 139.53 | 2.56 | 2.78 | 2.84 | 2.82 | 2.90 | |
98 | 135.87 | 145.41 | 148.06 | 147.49 | 150.93 | 2.82 | 3.02 | 3.07 | 3.06 | 3.13 | |
112 | 154.13 | 164.32 | 166.58 | 165.71 | 168.77 | 3.00 | 3.21 | 3.25 | 3.23 | 3.30 | |
126 | 166.84 | 176.33 | 178.38 | 177.63 | 180.32 | 3.06 | 3.24 | 3.28 | 3.26 | 3.31 | |
140 | 170.49 | 180.08 | 181.84 | 181.26 | 184.05 | 2.91 | 3.08 | 3.11 | 3.09 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vangi, E.; Dalmonech, D.; Morichetti, M.; Grieco, E.; Giannetti, F.; D’Amico, G.; Nakhavali, M.; Chirici, G.; Collalti, A. Stand Age and Climate Change Effects on Carbon Increments and Stock Dynamics. Forests 2024, 15, 1120. https://doi.org/10.3390/f15071120
Vangi E, Dalmonech D, Morichetti M, Grieco E, Giannetti F, D’Amico G, Nakhavali M, Chirici G, Collalti A. Stand Age and Climate Change Effects on Carbon Increments and Stock Dynamics. Forests. 2024; 15(7):1120. https://doi.org/10.3390/f15071120
Chicago/Turabian StyleVangi, Elia, Daniela Dalmonech, Mauro Morichetti, Elisa Grieco, Francesca Giannetti, Giovanni D’Amico, Mahdi (Andre) Nakhavali, Gherardo Chirici, and Alessio Collalti. 2024. "Stand Age and Climate Change Effects on Carbon Increments and Stock Dynamics" Forests 15, no. 7: 1120. https://doi.org/10.3390/f15071120
APA StyleVangi, E., Dalmonech, D., Morichetti, M., Grieco, E., Giannetti, F., D’Amico, G., Nakhavali, M., Chirici, G., & Collalti, A. (2024). Stand Age and Climate Change Effects on Carbon Increments and Stock Dynamics. Forests, 15(7), 1120. https://doi.org/10.3390/f15071120