A Spatio-Temporal Analysis of the Frequency of Droughts in Mexico’s Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Delineation of Forest Systems
2.2. Spatial Mapping and Classification of Drought Intensity
2.3. Drought Frequency and Probability in Forest Systems
3. Results
3.1. Subsection Distribution of Forest Ecosystems in Mexico
3.2. Drought Intensity in Mexico
3.3. Drought Frequency Analysis in Forest Systems
4. Discussion
4.1. Forest Area Affected by Severe and Extreme Drought
4.2. Persistence of Severe and Extreme Droughts in Forest Areas
4.3. Critical Analysis and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed]
- Muse, N.M.; Tayfur, G.; Safari, M.J.S. Meteorological Drought Assessment and Trend Analysis in Puntland Region of Somalia. Sustainability 2023, 15, 10652. [Google Scholar] [CrossRef]
- Eyvaz, M.; Albahnasawi, A.; Tekbaş, M.; Gürbulak, E. Drought; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Mehdipour, S.; Nakhaee, N.; Khankeh, H.; Haghdoost, A.A. Impacts of drought on health: A qualitative case study from Iran. Int. J. Disaster Risk Reduct. 2022, 76, 103007. [Google Scholar] [CrossRef]
- Zaveri, E.; Damania, R.; Engle, N. Droughts and Deficits: Summary Evidence of the Global Impact on Economic Growth; World Bank Group: Washington, DC, USA, 2023; Available online: www.worldbank.org/gwsp (accessed on 20 May 2024).
- Nouri, M.; Homaee, M. Drought trend, frequency and extremity across a wide range of climates over Iran. Meteorol. Appl. 2020, 27, e1899. [Google Scholar] [CrossRef]
- Ortuzar, I.; Serrano, A.; Xabadia, À. Macroeconomic impacts of water allocation under droughts. Accounting for global supply chains in a multiregional context. Ecol. Econ. 2023, 211, 107904. [Google Scholar] [CrossRef]
- Orimoogunje, O.O.I.; Eslamian, S. (Eds.) Minimizing the Impacts of Drought, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; Available online: https://www.researchgate.net/publication/323018733 (accessed on 20 May 2024).
- Pozzi, W.; Sheffield, J.; Stefanski, R.; Cripe, D.; Pulwarty, R.; Vogt, J.V.; Heim, R.R.; Brewer, M.J.; Svoboda, M.; Westerhoff, R.; et al. Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Am. Meteorol. Soc. 2013, 94, 776–785. [Google Scholar] [CrossRef]
- da Silva, G.J.F.; de Oliveira, N.M.; Santos, C.A.G.; da Silva, R.M. Spatiotemporal variability of vegetation due to drought dynamics (2012–2017): A case study of the Upper Paraíba River basin, Brazil. Nat. Hazards 2020, 102, 939–964. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Jiao, W.; Wu, X.; Zeng, X.; Zhao, L.; Wang, L.; Guo, J.; Xing, X.; Hong, Y. Spatial Heterogeneity of Vegetation Resilience Changes to Different Drought Types. Earths Future 2023, 11, e2022EF003108. [Google Scholar] [CrossRef]
- Gessner, C.; Fischer, E.M.; Beyerle, U.; Knutti, R. Multi-year drought storylines for Europe and North America from an iteratively perturbed global climate model. Weather Clim. Extremes 2022, 38, 100512. [Google Scholar] [CrossRef]
- Brázdil, R.; Demarée, G.R.; Kiss, A.; Dobrovolný, P.; Chromá, K.; Trnka, M.; Dolák, L.; Řezníčková, L.; Zahradníček, P.; Limanowka, D.; et al. The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements. Clim. Past 2019, 15, 1861–1884. [Google Scholar] [CrossRef]
- Lupo, A.R.; Kononova, N.K.; Semenova, I.G.; Lebedeva, M.G. A Comparison of the Characteristics of Extreme Drought during the Late 20thand Early 21stCenturies over Eurasia and North America. IOP Conf. Ser. Earth Environ. Sci. 2022, 949, 012122. [Google Scholar] [CrossRef]
- Runde, I.; Zobel, Z.; Schwalm, C. Human and natural resource exposure to extreme drought at 1.0 °C–4.0 °C warming levels. Environ. Res. Lett. 2022, 17, 064005. [Google Scholar] [CrossRef]
- Reyes, L.J.C.; Rangel, H.Á.; Herazo, L.C.S. Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions. Atmosphere 2022, 13, 236. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor. Appl. Climatol. 2019, 135, 1435–1447. [Google Scholar] [CrossRef]
- Hadisuwito, A.S.; Hassan, F.H. Selection Drought Index Calculation Methods Using Electre, Topsis, and Analytic Hierarchy Process. Int. J. Eng. Technol. 2018, 7, 188. [Google Scholar] [CrossRef]
- Charlton, C.; Stephenson, T.; Taylor, M.A.; Campbell, J. Evaluating Skill of the Keetch–Byram Drought Index, Vapour Pressure Deficit and Water Potential for Determining Bushfire Potential in Jamaica. Atmosphere 2022, 13, 1267. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Zhang, Q.; Liu, Q.; You, X.; Wang, L. Analysis of the Difference between Climate Aridity Index and Meteorological Drought Index in the Summer Monsoon Transition Zone. Remote Sens. 2023, 15, 1175. [Google Scholar] [CrossRef]
- Arabzadeh, R.; Kholoosi, M.M.; Bazrafshan, J. Regional Hydrological Drought Monitoring Using Principal Components Analysis. J. Irrig. Drain. Eng. 2016, 142, 04015029. [Google Scholar] [CrossRef]
- Azhdari, Z.; Bazrafshan, O.; Zamani, H.; Shekari, M.; Singh, V.P. Hydro-meteorological drought risk assessment using linear and nonlinear multivariate methods. Phys. Chem. Earth 2021, 123, 103046. [Google Scholar] [CrossRef]
- Bezdan, J.; Bezdan, A.; Blagojević, B.; Mesaroš, M.; Pejić, B.; Vranešević, M.; Pavić, D.; Nikolić-Đorić, E. SPEI-based approach to agricultural drought monitoring in Vojvodina region. Water 2019, 11, 1481. [Google Scholar] [CrossRef]
- Hou, M.; Yao, N.; Li, Y.; Liu, F.; Biswas, A.; Pulatov, A.; Hassan, I. Better Drought Index between SPEI and SMDI and the Key Parameters in Denoting Drought Impacts on Spring Wheat Yields in Qinghai, China. Agronomy 2022, 12, 1552. [Google Scholar] [CrossRef]
- Butu, H.M.; Seo, Y.; Huh, J.S. Determining extremes for future precipitation in South Korea based on RCP scenarios using non-parametric SPI. Sustainability 2020, 12, 963. [Google Scholar] [CrossRef]
- Yeh, H.F.; Lin, X.Y.; Huang, C.C.; Chen, H.Y. A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan. Geosciences 2024, 14, 106. [Google Scholar] [CrossRef]
- Chávez, J.E.R. Allocation of drought relief resources and its biased impact on agricultural production in Mexico. Sobre México Temas Econ. 2022, 1, 40–80. [Google Scholar] [CrossRef]
- León, G.S.-D.; Moran-Ramírez, J.; Ramos-Leal, J.A. Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico. Agriculture 2022, 12, 1379. [Google Scholar] [CrossRef]
- Salas-Martínez, F.; Valdés-Rodríguez, O.A.; Palacios-Wassenaar, O.M.; Márquez-Grajales, A. Analysis of the evolution of drought through spi and its relationship with the agricultural sector in the central zone of the state of Veracruz, Mexico. Agronomy 2021, 11, 2099. [Google Scholar] [CrossRef]
- Zempoaltecatl-Ramirez, E.; Monsiváis-Huertero, A.; Quiroz-Ibarra, J.E.; González-Ordiano, J.Á. Validation of a Drought Index Based on Smos Soil Moisture Product Over An Agricultural Area in Central Mexico. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1335–1338. [Google Scholar] [CrossRef]
- Sánchez, H.U.R.; Montiel, A.L.F.; Bañuelos, A.D.O.; De la Torre Villaseñor, O. The Agricultural Sector and Climate Change in Mexico. J. Agric. Ecol. Res. Int. 2022, 23, 19–44. [Google Scholar] [CrossRef]
- Camarero, J.J.; Barreda, G.S.; Alla, A.Q.; de Andrés, E.G.; Martínez, M.M.; Vicente-Serrano, S.M. The precedents and the responses of trees to extreme droughts reveal the processes involved in the die-off of Mediterranean conifer forests. Ecosistemas 2012, 21, 22–30. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Navarro-Cerrillo, R. La sequía y la gestión histórica como factores del decaimiento forestal en las repoblaciones del sur peninsular. In Los Bosques y la Biodiversidad Frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España; Herrer, A., Zavala, M.A., Eds.; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2015. [Google Scholar]
- Ruiz-Valencia, J.A.; Vázquez-Sánchez, M.; Burgos-Hernández, M.; Gutiérrez, J.; Terrazas, T. Wood anatomy of Forestiera (Oleaceae) species in Mexico. Acta Bot. Mex 2021, 128, e1924. [Google Scholar] [CrossRef]
- Takano-Rojas, H.; Murray-Tortarolo, G.; Maass, M.; Castillo, A. Characterization, variability and long-term trends on local climate in a Mexican tropical dry forest. Int. J. Climatol. 2023, 43, 5077–5091. [Google Scholar] [CrossRef]
- López, M.N.; Robles, M.; Gómez, R.; Velasco, V.; Esparza, G. Caracterización de la sequía a diversas escalas de tiempo en Chihuahua, México. Agrociencia 2007, 41, 253–262. Available online: http://www.redalyc.org/articulo.oa?id=30241301 (accessed on 25 September 2023).
- Argüelles-Marrón, B.; Meave, J.A.; Luna-Vega, I.; Crispin-DelaCruz, D.B.; Szejner, P.; Ames-Martínez, F.N.; Rodríguez-Ramírez, E.C. Adaptation potential of Neotropical montane oaks to drought events: Wood anatomy sensitivity in Quercus delgadoana and Quercus meavei. Funct. Ecol. 2023, 37, 2040–2055. [Google Scholar] [CrossRef]
- Correa-Díaz, A.; Villanueva-Díaz, J.; Gómez-Guerrero, A.; Martínez-Bautista, H.; Castruita-Esparza, L.U.; Horwath, W.R.; Silva, L.C.R. A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. Glob. Chang. Biol. 2023, 29, 3652–3666. [Google Scholar] [CrossRef] [PubMed]
- Le, T.S.; Harper, R.; Dell, B. Application of Remote Sensing in Detecting and Monitoring Water Stress in Forests. Remote Sens. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Rashiq, A.; Kumar, V.; Prakash, O. A Spatiotemporal Assessment of the Precipitation Variability and Pattern, and an Evaluation of the Predictive Reliability, of Global Climate Models over Bihar. Hydrology 2024, 11, 50. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Sciencie 2015, 349, 823–826. [Google Scholar] [CrossRef]
- INEGI. Carta de Uso de Suelo y Vegetación, Serie VII, Escala 1:250,000; INEGI: Aguascalientes, Mexico, 2021. [Google Scholar]
- CONAZA. Informe Nacional 2022 de Acciones Contra la Desertificación, Degradación de Tierras y Sequía en México; Comisión Nacional de Zonas Áridas: Saltillo, Mexico, 2023.
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Proc. 8th Conf. Appl. Climatol. 1993, 17, 179–183. [Google Scholar]
- Servicio Meteorológico Nacional, Índice Estandarizado de Precipitación (SPI). Available online: https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/spi (accessed on 25 August 2023).
- Chen, J.; Han, C.; Peng, Y.; Wang, M.; Zhao, Y. Improved three-dimensional mapping of soil chromium pollution with sparse borehole data: Incorporating multisource auxiliary data into IDW-based interpolation. Soil Use Manag. 2023, 39, 933–947. [Google Scholar] [CrossRef]
- Kim, J.; Han, J.; Park, K.; Seok, S. Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping. Appl. Sci. 2022, 12, 11652. [Google Scholar] [CrossRef]
- Bahmani, S.; Naganna, S.R.; Ghorbani, M.A.; Shahabi, M.; Asadi, E.; Shahid, S. Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas. Environ. Model. Assess. 2021, 26, 803–821. [Google Scholar] [CrossRef]
- Barker, L.J.; Rickards, N.J.; Sarkar, S.; Hannaford, J.; King-Okumu, C.; Rees, G. Good Practice Guidance for National Reporting on UNCCD Strategic Objective 3: To Mitigate, Adapt to, and Manage the Effects of Drought in Order to Enhance Resilience of Vulnerable Populations and Ecosystems; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2021. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R. 2023. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 1 September 2023).
- CONAGUA, Política Pública Nacional para la Sequía. Documento Rector. 2014. Available online: https://www.gob.mx/conagua (accessed on 28 February 2024).
- Haberstroh, S.; Werner, C. The role of species interactions for forest resilience to drought. Plant Biol. 2022, 24, 1098–1107. [Google Scholar] [CrossRef]
- Bendall, E.R.; Bedward, M.; Boer, M.; Clarke, H.; Collins, L.; Leigh, A.; Bradstock, R.A. Changes in the resilience of resprouting juvenile tree populations in temperate forests due to coupled severe drought and fire. Plant Ecol. 2022, 223, 907–923. [Google Scholar] [CrossRef]
- Werner, C. Extreme droughts and heatwaves endanger temperate forests. Plant Biol. 2022, 24, 1091–1092. [Google Scholar] [CrossRef]
- Speich, M.J.R. Quantifying and modeling water availability in temperate forests: A review of drought and aridity indices. iForest 2019, 12, 1–16. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Maxwell, J.; Kneeshaw, D.; Pederson, N.; Duchesne, L.; Logan, T.; Houle, D.; Arseneault, D.; Beier, C.M.; Bishop, D.A.; et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 2018, 24, 2339–2351. [Google Scholar] [CrossRef]
- Agustín-Canales, N.S.; Cruz-Sánchez, Y.; la Rosa, M.A.B.-D.; González-Tepale, M.R.; Monterroso-Rivas, A.I. Drought and Vulnerability in Mexico’s Forest Ecosystems. Forests 2023, 14, 1813. [Google Scholar] [CrossRef]
- Comisión Nacional Forestal (CONAFOR). El Sector Forestal Mexicano en Cifras: Bosques para el Bienestar Social y Climático; CONAFOR: Zapopan, Mexico, 2020.
- CONAGUA. Monitor de Sequía en México (MSM). Available online: https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico (accessed on 9 April 2024).
- Cárdenas, O.L.; Ruacho, O.G.G.; Montoya, J.M.; Diéguez, E.T. Hot Extremes and Climatological Drought Indicators in the Transitional Semiarid-Subtropical Region of Sinaloa, Northwest Mexico. Pol. J. Environ. Stud. 2022, 31, 4567–4577. [Google Scholar] [CrossRef]
- García-Valdés, R.; Morales-Castilla, I. Efectos del cambio climático en los ecosistemas forestales: Integrando inventarios y modelos. Ecosistemas 2016, 25, 51–59. [Google Scholar] [CrossRef]
- Fernández, A.S.; Cabrera, I.I.V.; Ruiz, L.M.P.; Ávila, E.C.; Cobos, F.A.; Ortega, J.B. Resilience of vegetation cover in Southwest Mexico to the climate change effects. Rev. Peru. Biol. 2021, 28, e18187. [Google Scholar] [CrossRef]
- Barreras, A.; Alanís de la Rosa, J.A.; Mayorga, R.; Cuenca, R.; Moreno-G, C.; Godínez, C.; Delgado, C.; Soriano-Luna, M.D.L.Á.; George, S.; Aldrete-Leal, M.I.; et al. Spatial predictions of tree density and tree height across Mexico forests using ensemble learning and forest inventory data. Ecol. Evol. 2023, 13, e10090. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, A. Role of Forest Management in Environmental Studies with Reference to the Maintaining of Conservation Values. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 496–502. [Google Scholar] [CrossRef]
- Li, J.; Zhou, A.; Liao, Y.; Zhao, Z.; Mao, X.; Zhang, S. Forest Ecological Diversity Change Prediction Discrete Dynamic Model. Discret. Dyn. Nat. Soc. 2022, 2022, 4869363. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Alarcón, A.; Álvarez Dávila, E.; et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 2016, 30, 964–982. [Google Scholar] [CrossRef]
- Asefi-Najafabady, S.; Saatchi, S. Response of African humid tropical forests to recent rainfall anomalies. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120306. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Sun, Z.; Cui, W.; Lei, J.; Fu, X.; Wu, L. A Study on Sensitivities of Tropical Forest GPP Responding to the Characteristics of Drought—A Case Study in Xishuangbanna, China. Water 2022, 14, 157. [Google Scholar] [CrossRef]
- Zou, L.; Cao, S.; Zhao, A.; Sanchez-Azofeifa, A. Assessing the temporal response of tropical dry forests to meteorological drought. Remote Sens. 2020, 12, 2341. [Google Scholar] [CrossRef]
- Cox, P.M.; Harris, P.P.; Huntingford, C.; Betts, R.A.; Collins, M.; Jones, C.D.; Jupp, T.E.; Marengo, J.A.; Nobre, C.A. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 2008, 453, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Beloiu, M.; Stahlmann, R.; Beierkuhnlein, C. High recovery of saplings after severe drought in temperate deciduous forests. Forests 2020, 11, 546. [Google Scholar] [CrossRef]
- Werner, C.; Haberstroh, S.; Seifert, T.; Christen, A.; Caldeira, M. Impacts of severe droughts on species interaction in forests. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-9525. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef]
- Zhang, Y.; Keenan, T.F.; Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 2021, 5, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xia, J. High ecosystem stability of evergreen broadleaf forests under severe droughts. Glob. Chang. Biol. 2019, 25, 3494–3503. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ramirez, E.C.; Vazquez-Garcia, J.A.; Garcia-Gonzalez, I.; Alcantara-Ayala, O.; Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 2020, 13, 331–340. [Google Scholar] [CrossRef]
- Grossiord, C. Having the right neighbors: How tree species diversity modulates drought impacts on forests. New Phytol. 2020, 228, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Wang, L.; Wang, C.P.; Lin, T.C. Distinct epiphyte responses to drought in tropical mountain cloud forests. Ecohydrology 2023, 16, e2569. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Malhi, Y.; Lewis, S.L.; Fauset, S.; Adu-Bredu, S.; Affum-Baffoe, K.; Baker, T.R.; Gvozdevaite, A.; Hubau, W.; Moore, S.; et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 2020, 11, 3346. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W.; Hou, Y.; Ma, L. A new risk probability calculation method for urban ecological risk assessment. Environ. Res. Lett. 2020, 15, 024016. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ahopelto, L.; Kallio, M.; Heino, M.; Kinnunen, P.; Fallon, A.; Kummu, M. Quantifying the co-occurrence of hydrological, meteorological, and agricultural droughts on a global scale. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Naderi, K.; Shokri, A.; Moghaddasi, M. Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function under Climate Change. Water Resour. Manag. 2022, 36, 2865–2888. [Google Scholar] [CrossRef]
- Eriyagama, N.; Smakhtin, V.; Eriyagama, N.; Smakhtin, V.; Gamage, N. A Global Picture of Drought Occurrence, Magnitude and Preparedness. Istanbul, Turkey. 2010. Available online: www.cru.uea.ac.uk/cru/data/hrg/timm/grid/CRU_TS_2_0.html (accessed on 24 May 2024).
- Qi, W.; Feng, L.; Yang, H.; Liu, J. Increasing Concurrent Drought Probability in Global Main Crop Production Countries. Geophys. Res. Lett. 2022, 49, e2021GL097060. [Google Scholar] [CrossRef]
- Castruita-Esparza, L.U.; Silva, L.C.R.; Gómez-Guerrero, A.; Villanueva-Díaz, J.; Correa-Díaz, A.; Horwath, W.R. Coping With Extreme Events: Growth and Water-Use Efficiency of Trees in Western Mexico During the Driest and Wettest Periods of the Past One Hundred Sixty Years. J. Geophys. Res. Biogeosci. 2019, 124, 3419–3431. [Google Scholar] [CrossRef]
- Rodriguez-Robles, U.; Arredondo, T.; Smart, D. Wood anatomical and physiological differences between semiarid pine and oak, stand up for their tree ring sensibility to precipitation variability. Agric. For. Meteorol. 2023, 338, 109530. [Google Scholar] [CrossRef]
- Rubio-Camacho, E.A.; Hesselbarth, M.H.K.; Flores-Garnica, J.G.; Acosta-Mireles, M. Tree mortality in mature temperate forests of central Mexico: A spatial approach. Eur. J. For. Res. 2023, 142, 565–577. [Google Scholar] [CrossRef]
- Gómez-Pineda, E.; Sáenz-Romero, C.; Salinas-Melgoza, M.Á.; Ramírez, M.I. Drought occurrence and forest management: Interrelated drivers of sanitary logging in central México temperate forests. Trees For. People 2023, 13, 100413. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Chen, P.; Zhang, C.; Yao, S.; Hao, Q.; Agassin, R.H.; Ji, K. The Transcriptomic Analysis of the Response of Pinus massoniana to Drought Stress and a Functional Study on the ERF1 Transcription Factor. Int. J. Mol. Sci. 2023, 24, 11103. [Google Scholar] [CrossRef] [PubMed]
- Calama, R.; Martínez, C.; Gordo, J.; Del Río, M.; Menéndez-Miguélez, M.; Pardos, M. The impact of climate and management on recent mortality in Pinus pinaster resin-tapped forests of inland Spain. Forestry 2024, 97, 120–132. [Google Scholar] [CrossRef]
- Peltier, D.M.P.; Ogle, K. Legacies of more frequent drought in ponderosa pine across the western United States. Glob. Chang. Biol. 2019, 25, 3803–3816. [Google Scholar] [CrossRef]
- Szejner, P.; Belmecheri, S.; Ehleringer, J.R.; Monson, R.K. Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia 2020, 192, 241–259. [Google Scholar] [CrossRef]
SPI Value | Drought Intensity Class |
---|---|
Greater than 0 | No drought |
0 to −0.99 | Mild drought |
−1.0 to −1.49 | Moderate drought |
−1.5 to −1.99 | Severe drought |
Less than or equal to −2 | Extreme drought |
Forest System * | Total Area | Area Affected by Drought (km2) | |||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | ||
Temperate forests | 336,589 | 3773 | 1349 | 7581 | 21,932 | 614 | 8066 | 4098 | 5137 |
Tropical forests | 302,603 | 2724 | 1939 | 4118 | 1675 | 1367 | 10,800 | 5404 | 10,155 |
Cloud forests | 12,921 | 239 | 182 | 162 | 0 | 189 | 99 | 98 | 691 |
Total drought affected area (km2) | 6736 | 3470 | 11,861 | 23,607 | 2,170 | 18,965 | 9600 | 15,983 | |
% | 3.87 | 2.45 | 4.87 | 7.07 | 2.10 | 6.73 | 3.76 | 10.23 | |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | ||
Temperate forests | 336,589 | 124 | 6805 | 4458 | 61,254 | 5084 | 834 | 10 | 899 |
Tropical forests | 302,603 | 169 | 17,610 | 3321 | 20,718 | 270 | 662 | 418 | 6295 |
Cloud forests | 12,921 | 0 | 451 | 50 | 193 | 63 | 153 | 2 | 192 |
Total drought affected area (km2) | 293 | 24,866 | 7829 | 82,165 | 5417 | 1649 | 430 | 7386 | |
% | 0.09 | 11.33 | 2.81 | 26.54 | 2.09 | 1.65 | 0.16 | 3.83 | |
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||||
Temperate forests | 336,589 | 912 | 6338 | 3243 | 9993 | 48,754 | 4071 | ||
Tropical forests | 302,603 | 5452 | 9194 | 3745 | 31,188 | 32,058 | 7410 | ||
Cloud forests | 12,921 | 189 | 48 | 469 | 3106 | 126 | 124 | ||
Total drought affected area (km2) | 6553 | 15,580 | 7457 | 44,287 | 80,938 | 11,605 | |||
% | 3.54 | 5.29 | 5.83 | 37.31 | 26.05 | 4.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Teloxa, L.C.; Monterroso-Rivas, A.I. A Spatio-Temporal Analysis of the Frequency of Droughts in Mexico’s Forest Ecosystems. Forests 2024, 15, 1241. https://doi.org/10.3390/f15071241
López-Teloxa LC, Monterroso-Rivas AI. A Spatio-Temporal Analysis of the Frequency of Droughts in Mexico’s Forest Ecosystems. Forests. 2024; 15(7):1241. https://doi.org/10.3390/f15071241
Chicago/Turabian StyleLópez-Teloxa, Leticia Citlaly, and Alejandro Ismael Monterroso-Rivas. 2024. "A Spatio-Temporal Analysis of the Frequency of Droughts in Mexico’s Forest Ecosystems" Forests 15, no. 7: 1241. https://doi.org/10.3390/f15071241
APA StyleLópez-Teloxa, L. C., & Monterroso-Rivas, A. I. (2024). A Spatio-Temporal Analysis of the Frequency of Droughts in Mexico’s Forest Ecosystems. Forests, 15(7), 1241. https://doi.org/10.3390/f15071241