Tree-Ring δ13C and Intrinsic Water-Use Efficiency Reveal Physiological Responses to Climate Change in Semi-Arid Areas of North China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Sample Plot and Tree-Ring Collection
2.3. Tree-Ring Stable Carbon Isotope Analysis
2.4. Carbon Isotope Discrimination and iWUE
2.5. Climate Data
2.6. Data Analysis
3. Results
3.1. Long-Term Tree-Ring δ13C of Different Tree Species
3.2. Comparison of Tree-Ring δ13C among Plots and Species
3.3. Relations of Tree-Ring δ13C and iWUE with Climate Index
4. Discussion
4.1. Effects of Site Conditions, Stand Factors, Climate Change, and Drought on Tree-Ring δ13C
4.2. Tree-Ring δ13C and iWUE Reflect Long-Term Tree Responses to Environment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucarini, V.; Ragone, F.; Lunkeit, F. Predicting climate change using response theory: Global averages and spatial patterns. J. Stat. Phys. 2017, 166, 1036–1064. [Google Scholar] [CrossRef]
- Devi, N.M.; Kukarskih, V.V.; Galimova, A.A.; Mazepa, V.S.; Grigoriev, A.A. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains. For. Ecosyst. 2020, 7, 7. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Boysen, L.R.; Lucht, W.; Gerten, D.; Heck, V.; Lenton, T.M.; Schellnhuber, H.J. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 2017, 5, 463–474. [Google Scholar] [CrossRef]
- Lu, W.; Yu, X.; Jia, G.; Li, H.; Liu, Z. Responses of Intrinsic Water-use Efficiency and Tree Growth to Climate Change in Semi-Arid Areas of North China. Sci. Rep. 2018, 8, 308. [Google Scholar]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Ehleringer, J.R. Variation in leaf carbon isotope discrimination in Encelia farinosa: Implications for growth, competition, and drought survival. Oecologia 1993, 95, 340–346. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cooper, T.A. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 1988, 76, 562–566. [Google Scholar] [CrossRef]
- Hartl-Meier, C.; Zang, C.; Büntgen, U.; Esper, J.; Rothe, A.; Göttlein, A.; Dirnböck, T.; Treydte, K. Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol. 2015, 35, 4–15. [Google Scholar] [CrossRef]
- Eilmann, B.; Buchmann, N.; Siegwolf, R.; Saurer, M.; Cherubini, P.; Rigling, A. Fast response of Scots pine to improved water availability reflected in tree-ring width and δ13C. Plant Cell Environ. 2010, 33, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Marchand, W.; Girardin, M.P.; Hartmann, H.; Depardieu, C.; Bergeron, Y. Strong overestimation of water-use efficiency responses to rising CO2 in tree-ring studies. Glob. Chang. Biol. 2020, 26, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, O.V.C.; Fonti, M.V.; Siegwolf, R.T.W.; Saurer, M.; Myglan, V.S. Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range. Forests 2020, 11, 1103. [Google Scholar] [CrossRef]
- Timofeeva, G.; Treydte, K.; Bugmann, H.; Rigling, A.; Schaub, M.; Siegwolf, R.; Saurer, M. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiol. 2017, 37, 1028–1041. [Google Scholar] [CrossRef]
- Jia, G.; Chen, L.; Yu, X.; Liu, Z. Soil water stress overrides the benefit of water-use efficiency from rising CO2 and temperature in a cold semi-arid poplar plantation. Plant Cell Environ. 2022, 45, 1172–1186. [Google Scholar] [CrossRef]
- Nock, C.A.; Baker, P.J.; Wanek, W.; Leis, A.; Grabner, M.; Bunyavejchewin, S.; Hietz, P. Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Glob. Change Biol. 2011, 17, 1049–1063. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Xu, G.; Zeng, X.; Wu, G.; Zhang, X.; Qin, D. Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China: Evaluation via δ13C and δ18O analysis of tree rings. Tree Physiol. 2014, 34, 966–980. [Google Scholar] [CrossRef]
- Lu, W.; Yu, X.; Jia, G. Retrospective analysis of tree decline based on intrinsic water-use efficiency in semi-arid areas of north China. Atmosphere 2020, 11, 577. [Google Scholar] [CrossRef]
- Loader, N.; Robertson, I.; McCarroll, D. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 395–407. [Google Scholar] [CrossRef]
- Sun, S.; He, C.; Qiu, L.; Li, C.; Zhang, J.; Meng, P. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China. Agric. For. Meteorol. 2018, 252, 39–48. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Farquhar, G.; Richards, R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- McCarroll, D.; Loader, N.J. Stable isotopes in tree rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef]
- Cherubini, P.; Battipaglia, G.; Innes, J.L. Tree vitality and forest health: Can tree-ring stable isotopes be used as indicators? Curr. For. Rep. 2021, 7, 69–80. [Google Scholar] [CrossRef]
- Panek, J.A.; Waring, R.H. Carbon isotope variation in Douglas-fir foliage: Improving the δ13C–climate relationship. Tree Physiol. 1995, 15, 657–663. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Qin, W.; Wang, X.; Wang, P. Differences in responses of tree-ring δ13C in angiosperms and gymnosperms to climate change on a global scale. For. Ecol. Manag. 2021, 492, 119247. [Google Scholar] [CrossRef]
- Brienen, R.; Helle, G.; Pons, T.; Boom, A.; Gloor, M.; Groenendijk, P.; Clerici, S.; Leng, M.; Jones, C. Paired analysis of tree ring width and carbon isotopes indicates when controls on tropical tree growth change from light to water limitations. Tree Physiol. 2022, 42, 1131–1148. [Google Scholar] [CrossRef]
- Lu, W.; Yu, X.; Jia, G. Instantaneous and long-term CO2 assimilation of Platycladus orientalis estimated from 13C discrimination. Ecol. Indic. 2019, 104, 237–247. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Jia, Y. Foliar δ13C showed no altitudinal trend in an arid region and atmospheric pressure exerted a negative effect on plant δ13C. Front. Plant Sci. 2017, 8, 250867. [Google Scholar] [CrossRef]
- Gouveia, A.C.; Freitas, H. Intraspecific competition and water use efficiency in Quercus suber: Evidence of an optimum tree density? Trees 2008, 22, 521–530. [Google Scholar] [CrossRef]
- Jack, S.B.; Long, J.N. Analysis of stand density effects on canopy structure: A conceptual approach. Trees 1991, 5, 44–49. [Google Scholar] [CrossRef]
- Toillon, J.; Fichot, R.; Dallé, E.; Berthelot, A.; Brignolas, F.; Marron, N. Planting density affects growth and water-use efficiency depending on site in Populus deltoides × P. nigra. For. Ecol. Manag. 2013, 304, 345–354. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P.; Wang, D.; Xu, Z. Density-and age-dependent influences of droughts and intrinsic water use efficiency on growth in temperate plantations. Agric. For. Meteorol. 2022, 325, 109134. [Google Scholar] [CrossRef]
- Mölder, I.; Leuschner, C.; Leuschner, H.H. δ13C signature of tree rings and radial increment of Fagus sylvatica trees as dependent on tree neighborhood and climate. Trees 2011, 25, 215–229. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 2010, 16, 399–415. [Google Scholar] [CrossRef]
- Gagen, M.; McCarroll, D.; Robertson, I.; Loader, N.J.; Jalkanen, R. Do tree ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends? Chem. Geol. 2008, 252, 42–51. [Google Scholar] [CrossRef]
- Daux, V.; Édouard, J.-L.; Masson-Delmotte, V.; Stievenard, M.; Hoffmann, G.; Pierre, M.; Mestre, O.; Danis, P.; Guibal, F. Can climate variations be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue. Earth Planet. Sci. Lett. 2011, 309, 221–233. [Google Scholar] [CrossRef]
- Loader, N.; Young, G.; Grudd, H.; McCarroll, D. Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 2013, 62, 97–113. [Google Scholar] [CrossRef]
- Young, G.H.; Demmler, J.C.; Gunnarson, B.E.; Kirchhefer, A.J.; Loader, N.J.; McCarroll, D. Age trends in tree ring growth and isotopic archives: A case study of Pinus sylvestris L. from northwestern Norway. Glob. Biogeochem. Cycles 2011, 25, GB2020. [Google Scholar] [CrossRef]
- Xu, G.; Wu, G.; Liu, X.; Chen, T.; Wang, B.; Hudson, A.; Trouet, V. Age-related climate response of tree-ring δ13C and δ18O from spruce in northwestern China, with implications for relative humidity reconstructions. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005513. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Driscoll, A.W.; Szejner, P.; Anderegg, W.R.; Ehleringer, J.R. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc. Natl. Acad. Sci. USA 2021, 118, e2118052118. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Qin, Z.; Lin, S.; Chen, X.; Chen, B.; He, B.; Wei, J.; Yuan, W. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun. 2022, 13, 1653. [Google Scholar] [CrossRef] [PubMed]
- Metz, J.; Annighöfer, P.; Schall, P.; Zimmermann, J.; Kahl, T.; Schulze, E.D.; Ammer, C. Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob. Change Biol. 2016, 22, 903–920. [Google Scholar] [CrossRef] [PubMed]
- Mathias, J.M.; Thomas, R.B. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc. Natl. Acad. Sci. USA 2021, 118, e2014286118. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sahlstedt, E.; Young, G.; Schiestl-Aalto, P.; Saurer, M.; Kolari, P.; Jyske, T.; Bäck, J.; Rinne-Garmston, K.T. Estimating intraseasonal intrinsic water-use efficiency from high-resolution tree-ring δ13C data in boreal Scots pine forests. New Phytol. 2023, 237, 1606–1619. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, N.; D’Andrea, E.; Bräuning, A.; Matteucci, G.; Bombi, P.; Lauteri, M. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings. Tree Physiol. 2018, 38, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ji, X.; Ye, L.; Jiang, J. Inherent water-use efficiency of different forest ecosystems and its relations to climatic variables. Forests 2022, 13, 775. [Google Scholar] [CrossRef]
- van der Sleen, J.P.; Groenendijk, P.; Vlam, M.; Anten, N.P.R.; Boom, A.; Bongers, F.; Pons, T.L.; Terburg, G.; Zuidema, P.A. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 2015, 8, 24–28. [Google Scholar] [CrossRef]
- Sun, S.; Qiu, L.; He, C.; Li, C.; Zhang, J.; Meng, P. Drought-Affected Populus simonii Carr. Show Lower Growth and Long-Term Increases in Intrinsic Water-Use Efficiency Prior to Tree Mortality. Forests 2018, 9, 564. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; Mcdowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Mcdowell, N.G. Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef]
- Liu, X.; Wu, G.; Xu, G.; Chen, T.; Wang, B. The positive contribution of iWUE to the resilience of Schrenk spruce (Picea schrenkiana) to extreme drought in the western Tianshan Mountains, China. Acta Physiol. Plant 2020, 42, 168. [Google Scholar]
- Martínez-Sancho, E.; Dorado-Lián, I.; Gutiérrez-Merino, E.; Matiu, M.; Helle, G.; Heinrich, I.; Menzel, A. Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. Glob. Change Biol. 2017, 24, 1012–1028. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Wu, D.; Li, S.; Wang, L. Seasonal variation in δ13C of Pinus. yunnanensis and Pinus. armandii at different stand ages. Sci. Rep. 2023, 13, 7938. [Google Scholar] [CrossRef] [PubMed]
- Jongrungklang, N.; Toomsan, B.; Vorasoot, N.; Jogloy, S.; Patanothai, A. Identification of Peanut Genotypes with High Water Use Efficiency under Drought Stress Conditions from Peanut Germplasm of Diverse Origins. Asian J. Plant Sci. 2008, 7, 628–638. [Google Scholar] [CrossRef]
Density | Age | Slope | Aspect | |||||
---|---|---|---|---|---|---|---|---|
High | Low | Mature | Middle | Steep | Gentle | Sunny | Shadow | |
S1 | √ | √ | √ | √ | ||||
S2 | √ | √ | √ | √ | ||||
S3 | √ | √ | √ | √ | ||||
S4 | √ | √ | √ | √ | ||||
S5 | √ | √ | √ | √ | ||||
S6 | √ | √ | √ | √ | ||||
S7 | √ | √ | √ | √ | ||||
S8 | √ | √ | √ | √ | ||||
S9 | √ | √ | √ | √ | ||||
S10 | √ | √ | √ | √ | ||||
S11 | √ | √ | √ | √ | ||||
S12 | √ | √ | √ | √ | ||||
S13 | √ | √ | √ | √ | ||||
S14 | √ | √ | √ | √ | ||||
S15 | √ | √ | √ | √ | ||||
S16 | √ | √ | √ | √ |
Tree Species | Numerical Order of Tree-Ring δ13C among Plots |
---|---|
P. orientalis | P1 > P3 > P6 > P5 > P13 > P2 > P9 > P7 > P10 > P11 > P15 > P4 > P8 > P14 > P16 > P12 |
P. tabulaeformis | P1 > P3 > P6 > P2 > P5 > P9 > P13 > P7 > P11 > P8 > P4 > P10 > P12 > P14 > P15 > P16 |
Q. variabilis | P1 > P3 > P6 > P5 > P2 > P9 > P7 > P4 > P15 > P10 > P11 > P13 > P8 > P14 > P12 > P16 |
R. pseudoacacia | P1 > P3 > P6 > P5 > P2 > P9 > P7 > P4 > P15 > P10 > P11 > P13 > P8 > P14 > P12 > P16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Wu, B.; Yu, X.; Jia, G.; Gao, Y.; Wang, L.; Lu, A. Tree-Ring δ13C and Intrinsic Water-Use Efficiency Reveal Physiological Responses to Climate Change in Semi-Arid Areas of North China. Forests 2024, 15, 1272. https://doi.org/10.3390/f15071272
Lu W, Wu B, Yu X, Jia G, Gao Y, Wang L, Lu A. Tree-Ring δ13C and Intrinsic Water-Use Efficiency Reveal Physiological Responses to Climate Change in Semi-Arid Areas of North China. Forests. 2024; 15(7):1272. https://doi.org/10.3390/f15071272
Chicago/Turabian StyleLu, Weiwei, Bo Wu, Xinxiao Yu, Guodong Jia, Ying Gao, Lili Wang, and Anran Lu. 2024. "Tree-Ring δ13C and Intrinsic Water-Use Efficiency Reveal Physiological Responses to Climate Change in Semi-Arid Areas of North China" Forests 15, no. 7: 1272. https://doi.org/10.3390/f15071272
APA StyleLu, W., Wu, B., Yu, X., Jia, G., Gao, Y., Wang, L., & Lu, A. (2024). Tree-Ring δ13C and Intrinsic Water-Use Efficiency Reveal Physiological Responses to Climate Change in Semi-Arid Areas of North China. Forests, 15(7), 1272. https://doi.org/10.3390/f15071272