Analysis of the Potential Distribution of Shoot Blight of Larch in China Based on the Optimized MaxEnt and Biomod2 Ensemble Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Data of the Shoot Blight of Larch
2.2. Environmental Factors
2.3. Optimized MaxEnt Model
2.4. The Biomod2 Ensemble Model
2.5. Evaluation of the Models
2.6. Classification of the Potentially Suitable Distribution
3. Results
3.1. Model Parameter Optimization and Performance
3.2. The Importance of Environmental Variables
3.3. Spatial Distribution of Potential Habitat Areas
4. Discussion
4.1. Environmental Variables and Changes in the Potential Distribution of the Shoot Blight of Larch
4.2. Model Comparisons and Selection
4.3. Model Predictive Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Miao, C.; Wang, H. Influence of climate change on distribution of suitable areas of Larix plantation in China. Acta Ecol. Sin. 2023, 43, 9686–9698. [Google Scholar] [CrossRef]
- Hattori, Y.; Ando, Y.; Nakashima, C. Taxonomical re-examination of the genus Neofusicoccum in Japan. Mycoscience 2021, 62, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Biocontrol and Molecular Diagnosis of the Larch Shoot Blight. Master’s Thesis, Northeast Forestry University, Harbin, China, 2009. [Google Scholar]
- Shi, C. Popularizing of Integrated Control Technology to Larch Blight. Master’s Thesis, Northeast Forestry University, Harbin, China, 2003. [Google Scholar]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Systemat. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Escobar, L.E.; Romero-Alvarez, D.; Leon, R.; Lepe-Lopez, M.A.; Craft, M.E.; Borbor-Cordova, M.J.; Svenning, J.-C. Declining prevalence of disease vectors under climate change. Sci. Rep. 2016, 6, 39150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.I.; Ye, X.; Fan, B. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEntMaxEnt models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, N.; Shen, M.; Li, J. Comparison between optimized MaxEntMaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Sci. Total Environ. 2022, 842, 156867. [Google Scholar] [CrossRef] [PubMed]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A practical guide to MaxEntMaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of E. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Čengić, M.; Rost, J.; Remenska, D.; Janse, J.H.; Huijbregts, M.A.J.; Schipper, A.M. On the importance of predictor choice, modelling technique, and number of pseudo-absences for bioclimatic envelope model performance. Ecol. Evol. 2020, 10, 12307–12317. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Marmion, M.; Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 2012, 35, 276–288. [Google Scholar] [CrossRef]
- Wenger, S.J.; Olden, J.D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 2012, 3, 260–267. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Bowen, A.K.M.; Stevens, M.H.H. Temperature, topography, soil characteristics, and NDVI drive habitat preferences of a shade-tolerant invasive grass. Ecol. Evol. 2020, 10, 10785–10797. [Google Scholar] [CrossRef]
- Freeman, B.; Jiménez-García, D.; Barca, B.; Grainger, M. Using remotely sensed and climate data to predict the current and potential future geographic distribution of a bird at multiple scales: The case of Agelastes meleagrides, a western African forest endemic. Avian Res. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Holder, A.M.; Markarian, A.; Doyle, J.M.; Olson, J.R. Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations. Ecol. Modell. 2020, 433, 109231. [Google Scholar] [CrossRef]
- Segurado, P.; Araujo, M.B. An evaluation of methods for modelling species distributions. J. Biogeogr. 2004, 31, 1555–1568. [Google Scholar] [CrossRef]
- Strubbe, D.; Jackson, H.; Groombridge, J.; Matthysen, E. Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range. Divers. Distrib. 2015, 21, 675–685. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD–A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Crimmins, S.M.; Dobrowski, S.Z.; Mynsberge, A.R. Evaluating ensemble forecasts of plant species distributions under climate change. Ecol. Modell. 2013, 266, 126–130. [Google Scholar] [CrossRef]
- Zhu, G.P.; Peterson, A.T. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol. Invasions 2017, 19, 2519–2532. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Elith, J.; Simpson, J.; Hirsch, M.; Burgman, M.A. Taxonomic uncertainty and decision making for biosecurity: Spatial models for myrtle/guava rust. Austral. Plant Pathol. 2013, 42, 43–51. [Google Scholar] [CrossRef]
- Narouei-Khandan, H.A.; Halbert, S.E.; Worner, S.P.; van Bruggen, A.H.C. Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. Eur. J. Plant Pathol. 2016, 144, 655–670. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using E. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, T.; Luo, Y.; Shi, J. Prediction of the global potential geographical distribution of Hylurgus ligniperda using a maximum entropy model. For. Ecosyst. 2022, 9, 100042. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Liu, Z.; Yang, Y.; Khoso, A.G.; Wang, L.; Liu, D. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. J. Pest Sci. 2023, 96, 55–69. [Google Scholar] [CrossRef]
- Yan, H. Spatio-Temporal Epidemic Characteristics and Risk Analysis of Poplar Canker of Cytospora chrysosperma in Northeast China. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
- Townsend Peterson, A.; Papeş, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and E. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Araujo, M.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 2020, 43, 549–558. [Google Scholar] [CrossRef]
- Zimmermann, N.E.; Elith, J.; Graham, C.H.; Phillips, S.; Peterson, A.T. What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecol. Monogr. 2007, 77, 615–630. [Google Scholar] [CrossRef]
- Hanspach, J.; Kühn, I.; Pompe, S.; Klotz, S. Predictive performance of plant species distribution models depends on species traits. Pers. Plant Ecol. Evol. Systemat. 2010, 12, 219–225. [Google Scholar] [CrossRef]
- McCune, J.L.; Rosner-Katz, H.; Bennett, J.R.; Schuster, R.; Kharouba, H.M. Do traits of plant species predict the efficacy of species distribution models for finding new occurrences? Ecol. Evol. 2020, 10, 5001–5014. [Google Scholar] [CrossRef] [PubMed]
- Lissovsky, A.A.; Dudov, S.V. Species-distribution modeling: Advantages and limitations of its application. 2. MaxEntMaxEnt. Biol. Bull. Rev. 2021, 11, 265–275. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’sMaxEnt parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better E models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Pueyo-Herrera, P.; Tang, C.Q.; Matsui, T.; Ohashi, H.; Qian, S.; Yang, Y.; Herrando-Moraira, S.; Nualart, N.; López-Pujol, J. Ecological niche modeling applied to the conservation of the East Asian relict endemism Glyptostrobus pensilis (Cupressaceae). New For. 2023, 54, 1131–1152. [Google Scholar] [CrossRef]
Abbreviation | Description | Whether to Use for Modeling |
---|---|---|
bio1 | Mean Annual Temperature (°C) | Yes |
bio2 | Mean Diurnal Range (Mean of monthly (max temp − min temp)) (°C) | No |
bio3 | Isothermality (bio2/bio7) × 100 | Yes |
bio4 | Temperature Seasonality (standard deviation × 100) | Yes |
bio5 | Max Temperature of Warmest Month (°C) | No |
bio6 | Min Temperature of Coldest Month (°C) | No |
bio7 | Annual Temperature Range (bio5–bio6) (°C) | No |
bio8 | Mean Temperature of Wettest Quarter (°C) | No |
bio9 | Mean Temperature of Driest Quarter | No |
bio10 | Mean Temperature of Warmest Quarter | Yes |
bio11 | Mean Temperature of Coldest Quarter (°C) | No |
bio12 | Annual Precipitation (mm) | Yes |
bio13 | Precipitation of Wettest Month (mm) | No |
bio14 | Precipitation of Driest Month (mm) | No |
bio15 | Precipitation Seasonality (mm) | No |
bio16 | Precipitation of Wettest Quarter | Yes |
bio17 | Precipitation of Driest Quarter (mm) | No |
bio18 | Precipitation of Warmest Quarter (mm) | Yes |
bio19 | Precipitation of Coldest Quarter (mm) | No |
elev | Elevation (metric) | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, W.; Liang, Y. Analysis of the Potential Distribution of Shoot Blight of Larch in China Based on the Optimized MaxEnt and Biomod2 Ensemble Models. Forests 2024, 15, 1313. https://doi.org/10.3390/f15081313
Zhang X, Wu W, Liang Y. Analysis of the Potential Distribution of Shoot Blight of Larch in China Based on the Optimized MaxEnt and Biomod2 Ensemble Models. Forests. 2024; 15(8):1313. https://doi.org/10.3390/f15081313
Chicago/Turabian StyleZhang, Xiuyun, Wenhui Wu, and Yingmei Liang. 2024. "Analysis of the Potential Distribution of Shoot Blight of Larch in China Based on the Optimized MaxEnt and Biomod2 Ensemble Models" Forests 15, no. 8: 1313. https://doi.org/10.3390/f15081313
APA StyleZhang, X., Wu, W., & Liang, Y. (2024). Analysis of the Potential Distribution of Shoot Blight of Larch in China Based on the Optimized MaxEnt and Biomod2 Ensemble Models. Forests, 15(8), 1313. https://doi.org/10.3390/f15081313