Anthropogenic Impacts on a Temperate Forest Ecosystem, Revealed by a Late Holocene Pollen Record from an Archaeological Site in NE China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Biomization
2.3. Comparison of Pollen Data from Archaeological Sites
3. Results
3.1. Dating Results
3.2. Pollen Analysis and Biome Reconstruction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crutzen, P.J.; Stoermer, E.F. The ‘Anthropocene’ (2000). In Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History; Benner, S., Lax, G., Crutzen, P.J., Pöschl, U., Lelieveld, J., Brauch, H.G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–21. [Google Scholar]
- Crutzen, P.J. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- Certini, G.; Scalenghe, R. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 2011, 21, 1269–1274. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Wagreich, M.; Draganits, E. Early mining and smelting lead anomalies in geological archives as potential stratigraphic markers for the base of an early Anthropocene. Anthr. Rev. 2018, 5, 177–201. [Google Scholar] [CrossRef]
- Gibbard, P.; Walker, M.; Bauer, A.; Edgeworth, M.; Edwards, L.; Ellis, E.; Finney, S.; Gill, J.L.; Maslin, M.; Merritts, D. The Anthropocene as an Event, not an Epoch. J. Quat. Sci. 2022, 37, 395–399. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Waters, C.; Head, M.J. Anthropocene: Its stratigraphic basis. Nature 2017, 541, 289. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Han, Y.M.; Guo, M.L.; Gong, X.H. Sedimentary records of human activities in China over the past two millennia and implications for the Anthropocene: A review. Sci. Total Environ. 2022, 851, 158149. [Google Scholar] [CrossRef] [PubMed]
- Coope, G.R.; Lemdahl, G. Regional differences in the Lateglacial climate of northern Europe based on coleopteran analysis. J. Quat. Sci. 1995, 10, 391–395. [Google Scholar] [CrossRef]
- Quamar, M.F.; Chauhan, M.S. Late Holocene vegetation, climate change and human impact in southwestern Madhya Pradesh, India. J. Palaeosci. 2011, 60, 281–289. [Google Scholar] [CrossRef]
- Grosvenor, M.J.; Jones, R.T.; Turney, C.S.M.; Charman, D.J.; Hogg, A.; Coward, D.; Wilson, R. Human activity was a major driver of the mid-Holocene vegetation change in southern Cumbria: Implications for the elm decline in the British Isles. J. Quat. Sci. 2017, 32, 934–945. [Google Scholar] [CrossRef]
- Li, X.Q.; Dodson, J.; Zhou, J.; Zhou, X.Y. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000BP. Quat. Int. 2009, 202, 41–50. [Google Scholar] [CrossRef]
- ter Schure, A.T.M.; Bajard, M.; Loftsgarden, K.; Høeg, H.I.; Ballo, E.; Bakke, J.; Støren, E.W.N.; Iversen, F.; Kool, A.; Brysting, A.K.; et al. Anthropogenic and environmental drivers of vegetation change in southeastern Norway during the Holocene. Quat. Sci. Rev. 2021, 270, 107175. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Mazzanti, M.; Florenzano, A.; Montecchi, M.C.; Rattighieri, E.; Torri, P. Anthropogenic Pollen Indicators (API) from archaeological sites as local evidence of human-induced environments in the Italian peninsula. Ann. Bot. 2013, 3, 143–153. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhang, D.Y.; Li, W.J.; Li, Y.M.; Zhang, C.; Guan, K.Y.; Pan, B.R. Characteristics and utilization of plant diversity and resources in Central Asia. Reg. Sustain. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Bhatta, K.P.; Mottl, O.; Felde, V.A.; Flantua, S.G.; Birks, H.H.; Cao, X.Y.; Chen, F.H.; Grytnes, J.-A.; Seddon, A.W.; Birks, H.J.B. Exploring spatio-temporal patterns of palynological changes in Asia during the Holocene. Front. Ecol. Evol. 2023, 11, 1115784. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Weng, C.Y.; Steinke, S.; Mohtadi, M. Anthropogenic modification of vegetated landscapes in southern China from 6,000 years ago. Nat. Geosci. 2018, 11, 939–943. [Google Scholar] [CrossRef]
- Li, F.R.; Gaillard, M.-J.; Cao, X.Y.; Herzschuh, U.; Sugita, S.; Tarasov, P.E.; Wagner, M.; Xu, Q.H.; Ni, J.; Wang, W.M.; et al. Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth-Sci. Rev. 2020, 203, 103119. [Google Scholar] [CrossRef]
- Fan, B.S.; Lu, H.Y.; Li, Y.C.; Shen, C.M.; Xu, Q.H.; Zhang, J.P.; Huan, X.J.; Wang, Y.L.; Wang, N.Y.; Xu, D.K.; et al. A novel approach for quantitatively distinguishing between anthropogenic and natural effects on paleovegetation. PNAS Nexus 2024, 3, pgae135. [Google Scholar] [CrossRef]
- Zhao, Z.J. New Archaeobotanic Data for the Study of the Origins of Agriculture in China. Curr. Anthropol. 2011, 52, S295–S306. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhao, C.; Zhou, X.Y. Vegetation pattern of Northeast China during the special periods since the Last Glacial Maximum. Sci. China Earth Sci. 2019, 62, 1224–1240. [Google Scholar] [CrossRef]
- Ren, G.Y.; Zhang, L.S. A preliminary mapped summary of Holocene pollen data for Northeast China. Quat. Sci. Rev. 1998, 17, 669–688. [Google Scholar] [CrossRef]
- Zhao, K.L.; Li, X.Q.; Zhou, X.Y.; Sun, N. Agricultural characteristics of Middle-late Bronze Age in Western Liaoning Province. Chin. Bull. Bot. 2009, 44, 718–724. [Google Scholar]
- Zhao, K.L.; Li, X.Q.; Zhou, X.Y.; Sun, N. Agricultural activities and its impact on the environment in lower Xiajiadian culture period of the Chengzishan site, west Liaoning Province. Quat. Sci. 2011, 31, 8–15. [Google Scholar]
- Li, X.Q.; Shang, X.; Zhou, X.Y. Integrative method of sieving and heavy liquid in pollen analysis of loess. Arid Land Geogr. 2006, 29, 663–667. [Google Scholar]
- Xi, Y.Z.; Ning, J.C. Study on pollen morphology of plants from dry and semidry area in China. Yushania 1994, 11, 119–191. [Google Scholar]
- Wang, F.X.; Qian, N.F.; Zhang, Y.L.; Yang, H.Q. Pollen Flora of China, 2nd ed.; Science Press: Beijing, China, 1997. [Google Scholar]
- Li, X.Q.; Zhou, X.Y.; Shang, X.; Dodson, J. Different-(KPa/°C) size method of charcoal analysis in loess and its significance in the study of fire variation. J. Lake Sci. 2006, 18, 540–544. [Google Scholar]
- Herzschuh, U.; Kramer, A.; Mischke, S.; Zhang, C.J. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quat. Res. 2009, 71, 162–171. [Google Scholar] [CrossRef]
- Stebich, M.; Rehfeld, K.; Schluetz, F.; Tarasov, P.E.; Liu, J.Q.; Mingram, J. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 2015, 124, 275–289. [Google Scholar] [CrossRef]
- Cao, X.Y.; Tian, F.; Dallmeyer, A.; Herzschuh, U. Northern Hemisphere biome changes (>30° N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 2019, 220, 291–309. [Google Scholar] [CrossRef]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. Special paper: A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 1992, 19, 117–134. [Google Scholar] [CrossRef]
- Prentice, C.; Guiot, J.; Huntley, B.; Jolly, D.; Cheddadi, R. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 1996, 12, 185–194. [Google Scholar] [CrossRef]
- Williams, J.W.; Webb, T., III; Richard, P.H.; Newby, P. Late Quaternary biomes of Canada and the eastern United States. J. Biogeogr. 2000, 27, 585–607. [Google Scholar] [CrossRef]
- Takahara, H.; Sugita, S.; Harrison, S.P.; Miyoshi, N.; Morita, Y.; Uchiyama, T. Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 14C yr BP. J. Biogeogr. 2000, 27, 665–683. [Google Scholar] [CrossRef]
- Ni, J.; Yu, G.; Harrison, S.P.; Prentice, I.C. Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 289, 44–61. [Google Scholar] [CrossRef]
- Ni, J.; Cao, X.Y.; Jeltsch, F.; Herzschuh, U. Biome distribution over the last 22,000 yr in China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 409, 33–47. [Google Scholar] [CrossRef]
- Sun, A.Z.; Luo, Y.L.; Wu, H.B.; Chen, X.D.; Li, Q.; Yu, Y.Y.; Sun, X.J.; Guo, Z.T. An updated biomization scheme and vegetation reconstruction based on a synthesis of modern and mid-Holocene pollen data in China. Glob. Planet. Chang. 2020, 192, 103178. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhou, L.P.; Cui, H.T. Pollen indicators of human activity. Chin. Sci. Bull. 2008, 53, 1281–1293. [Google Scholar] [CrossRef]
- Hapsari, K.A.; Ballauff, J. Distinguishing pollen grains of cereal from wild grasses in the Sundaland region using size separation. Rev. Palaeobot. Palynol. 2022, 301, 104648. [Google Scholar] [CrossRef]
- Li, Y.Y.; Willis, K.J.; Zhou, L.P.; Cui, H.T. The impact of ancient civilization on the northeastern Chinese landscape: Palaeoecological evidence from the Western Liaohe River Basin, Inner Mongolia. Holocene 2006, 16, 1109–1121. [Google Scholar] [CrossRef]
- Tarasov, P.; Jin, G.Y.; Wagner, M. Mid-Holocene environmental and human dynamics in northeastern China reconstructed from pollen and archaeological data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 284–300. [Google Scholar] [CrossRef]
- Yu, R.R. Holocene Climate Change and Paleo-Human Living Environment in Qing Zhuangzi Area of Shenyang. Master’s Thesis, Hebei University of Geology, Shijiazhuang, China, 2020. [Google Scholar]
- Zhou, K.S. Environmental Archaeology of Shangzhai Neolithic Culture Site. Cult. Relics Cent. China 2007, 2, 19–24. [Google Scholar]
- Bakels, C. Pollen and Archaeology. In Handbook for the Analysis of Micro-Particles in Archaeological Samples; Springer: Berlin/Heidelberg, Germany, 2020; pp. 203–224. [Google Scholar]
- Zong, Y.Q.; Chen, Z.; Innes, J.B.; Chen, C.; Wang, Z.J.; Wang, H. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 2007, 449, 459–462. [Google Scholar] [CrossRef]
- Favre, E.; Escarguel, G.; Suc, J.-P.; Vidal, G.; Thévenod, L. A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover. Rev. Palaeobot. Palynol. 2008, 148, 13–35. [Google Scholar] [CrossRef]
- Dodson, J.; Li, X.Q.; Song, M.L. Agriculture and Holocene deforestation in eastern China. Quat. Int. 2024, 691, 1–7. [Google Scholar] [CrossRef]
- Ren, X.X.; Huang, X.Z.; Huang, C.; Wang, T.; Shen, Z.W.; Zhang, X.S.; Ding, G.Q.; Ayyamperumal, R.; Zhang, J.; Chen, X.M. Effects of human activities on mountain forest in northern China during the middle Holocene. Quat. Sci. Rev. 2022, 288, 107580. [Google Scholar] [CrossRef]
- Zhao, K.L.; Wang, M.; Shan, M.C.; Zhang, Y.P.; Zhou, X.Y.; Chen, F.Y.; Li, X.Q. The early Holocene ecology of hilly terrain reconstructed by plant remains from Ping’an Cave in northern China. Rev. Palaeobot. Palynol. 2022, 304, 104718. [Google Scholar] [CrossRef]
- Chen, W.; Song, B.; Shu, J.W.; Jin, C.F.; Wang, W.M. Vegetation history with implication of climate changes and human impacts over the last 9000 years in the Lake Nanyi area, Anhui Province, East China. Palaeoworld 2021, 30, 583–592. [Google Scholar] [CrossRef]
- Yang, Q.J.; Zhou, X.Y.; Zhao, C.; Gao, Q.; Liu, J.C.; Jia, W.M.; Jia, X.; Xin, Y.; Zhao, K.L.; Li, X.Q. Human occupation, slash-burning and vegetation response from the final Pleistocene to the middle Holocene, Daling River basin, NE China. Rev. Palaeobot. Palynol. 2020, 275, 104158. [Google Scholar] [CrossRef]
- Hosner, D.; Wagner, M.; Tarasov, P.E.; Chen, X.C.; Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: An overview. Holocene 2016, 26, 1576–1593. [Google Scholar] [CrossRef]
Abbr. | Plant Functional Type | Pollen Taxa |
---|---|---|
wte | Subtropical evergreen | Quercus |
ts | Subtropical summergreen tree | Betula, Corylus, Juglans, and Ulmus |
tef | Tropical and subtropical evergreen forbs | Chenopodiaceae and Poaceae |
ts1 | Warm-temperate summergreen | Corylus, Juglans, Quercus, Tilia, and Ulmus |
bts | Cool-temperate summergreen broadleaf | Betula, Juglans, Quercus, Tilia, and Ulmus |
tbs | Cool-temperate summergreen shrub | Ulmus |
bs | Boreal summergreen | Betula, Corylus, and Quercus |
bec | Boreal evergreen conifer | Pinus |
ctm | Cool-temperate meadow forb | Fabaceae and Humulus |
g | grass | Poaceae |
tf | Cool-temperate steppe forb | Artemisia, Chenopodiaceae, Fabaceae, Polygonaceae, and Taraxacum |
dsf | Cool-temperate desert forb | Artemisia and Fabaceae |
tds | Cool-temperate desert shrub | Chenopodiaceae |
aa | Arctic-alpine dwarf shrub | Betula, Corylus, and Ulmus |
am | Alpine meadow forb | Fabaceae |
ads | Alpine desert shrub | Chenopodiaceae |
ec | Eurythermic conifer | Pinus |
Biome Code | Biome | Plant Functional Types |
---|---|---|
TRFO | Tropical rain forest | wte |
TEDE | Warm-temperate mixed forest | ts1, g, ec |
WAMF | North subtropical mixed forest | wte, ts, ec |
MTFO | Middle subtropical broadleaf evergreen forest | wte, ec |
STFO | South subtropical broadleaf evergreen | wte, wtc |
COMX | Cool-temperate mixed forest | bts, ec |
CLDC | Cold-temperate summergreen conifer forest | bs, ec |
CLEC | Cold-temperate evergreen conifer forest | bec, ec |
DESE | Desert | tds, ads |
TEDS | Cool-temperate desert steppe | g, dsf |
STEP | Cool-temperate steppe | g, tf |
TEME | Cool-temperate meadow steppe | g, ctm |
TEFS | Cool-temperate forest steppe | tbs, tf |
ALME | Alpine meadow | aa, am |
ALST | Alpine steppe | am |
Depth (cm) | Lab No. | Dated Material | 14C age (yr BP, 95% Range) | Cal. age (yr BP, 95% Range) | Median Age (yr BP) |
---|---|---|---|---|---|
15 | OZK410 | Charcoal | 3335 ± 50 | 3650–3452 | 3556 |
55 | OZK411 | Charcoal | 3360 ± 70 | 3730–3447 | 3594 |
135 | OZK413 | Charcoal | 3340 ± 60 | 3718–3446 | 3566 |
195 | OZK414 | Charcoal | 3400 ± 45 | 3726–3548 | 3638 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, G.; Zhao, K.; Zhang, Y.; Liu, J.; Zhou, X.; Li, X. Anthropogenic Impacts on a Temperate Forest Ecosystem, Revealed by a Late Holocene Pollen Record from an Archaeological Site in NE China. Forests 2024, 15, 1331. https://doi.org/10.3390/f15081331
Bai G, Zhao K, Zhang Y, Liu J, Zhou X, Li X. Anthropogenic Impacts on a Temperate Forest Ecosystem, Revealed by a Late Holocene Pollen Record from an Archaeological Site in NE China. Forests. 2024; 15(8):1331. https://doi.org/10.3390/f15081331
Chicago/Turabian StyleBai, Guangyi, Keliang Zhao, Yaping Zhang, Junchi Liu, Xinying Zhou, and Xiaoqiang Li. 2024. "Anthropogenic Impacts on a Temperate Forest Ecosystem, Revealed by a Late Holocene Pollen Record from an Archaeological Site in NE China" Forests 15, no. 8: 1331. https://doi.org/10.3390/f15081331
APA StyleBai, G., Zhao, K., Zhang, Y., Liu, J., Zhou, X., & Li, X. (2024). Anthropogenic Impacts on a Temperate Forest Ecosystem, Revealed by a Late Holocene Pollen Record from an Archaeological Site in NE China. Forests, 15(8), 1331. https://doi.org/10.3390/f15081331