A Survey of Organic Carbon Stocks in Mineral Soils of Eucalyptus globulus Labill. Plantations under Mediterranean Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. SOC Assessment
2.3. Statistical Analysis
3. Results
3.1. SOC and C Stock by Lithology Group (Bedrock)
3.2. SOC and C Stock by Reference Soil Group (Soil Type)
3.3. Major Drivers for Soil C Stock
4. Discussion
4.1. C Stored in Eucalypt Stands and the Influence of Mediterranean Climate Conditions
4.2. SOC Stock and Soil Variability
4.3. Methodological Considerations
4.4. The Effect of Management Practices on SOC Stock and Further Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Forests 2020. Forests, Biodiversity and People; UNEP: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Sheil, D.; Murdiyarso, D. How forests attract rain: An examination of a new hypothesis. BioScience 2009, 59, 341–347. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover-water yield debate: From demand- to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Sheil, D. Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. For. Ecosyst. 2018, 5, 19. [Google Scholar] [CrossRef]
- Arroja, L.; Dias, A.C.; Capela, I. The role of Eucalyptus globulus forest and products in carbon sequestration. Climat. Chang. 2006, 74, 123–140. [Google Scholar] [CrossRef]
- Strandberg, G.; Chen, J.; Fyfe, R.; Kjellström, E.; Lindström, J.; Poska, A.; Zhang, Q.; Gaillard, M.-J. Did the Bronze Age deforestation of Europe affect its climate? A regional climate model study using pollen-based land cover reconstructions. Clim. Past 2023, 19, 1507–1530. [Google Scholar] [CrossRef]
- Barnes, M.L.; Zhang, Q.; Robeson, S.M.; Young, L.; Burakowski, E.A.; Oishi, A.C.; Stoy, P.C.; Katul, G.; Novick, K.A. A century of reforestation reduced anthropogenic warming in the Eastern United States. Earth’s Future 2024, 12, e2023EF003663. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Gómez-García, E.; Biging, G.; García-Villabrille, J.D.; Crecente-Campo, F.; Castedo-Dorado, F.; Rojo-Alboreca, A. Cumulative continuous predictions for bole and aboveground woody biomass in Eucalyptus globulus plantations in northwestern Spain. Biomass Bioenergy 2015, 77, 155–164. [Google Scholar] [CrossRef]
- Scalenghe, R.; Celi, L.; Costa, G.; Laudicina, V.A.; Santoni, S.; Vespertino, D.; La Mantia, T. Carbon stocks in a 50 year old Eucalyptus camaldulensis stand in Sicily, Italy. South. For. J. For. Sci. 2015, 77, 263–267. [Google Scholar] [CrossRef]
- Infante-Amate, J.; Iriarte-Goñi, I.; Aguilera, E. Historical changes in biomass carbon stocks in the Mediterranean (Spain, 1860–2010). Anthropocene 2023, 44, 100416. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.; Renner, S.S.; Hoogen, J.V.D.; Araza, A.; Herold, M.; et al. Integrated global assessment of the natural forest carbon potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef]
- Aalde, H.; Gonzalez, P.; Gytarsky, M.; Krug, T.; Kurz, W.A.; Ogle, S.; Raison, J.; Schoene, D.; Ravindranath, N.H.; Elhassan, N.G.; et al. Forest land. IPCC Guidel. Natl. Greenh. Gas Invent. 2006, 4, 1–83. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Carnicelli, S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma 2015, 251–252, 33–46. [Google Scholar] [CrossRef]
- ICNF. IFN6—Principais Resultados—Relatório Sumário; Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2019. [Google Scholar]
- Dias, A.C.; Martins, M.C.; Arroja, L.; Capela, I. Management of Forest Resources in the Perspective of the Kyoto Protocol. CARBOCENTRO Project Report; Universidade de Aveiro: Aveiro, Portugal, 2004. [Google Scholar]
- Fabião, A.; Madeira, M.; Steen, E. Root mass in plantations of Eucalyptus globulus in Portugal in relation to soil characteristics. Arid Land Res. Manag. 1987, 1, 185–194. [Google Scholar]
- Madeira, M.V.; Fabião, A.; Pereira, J.S.; Araújo, M.C.; Ribeiro, C. Changes in carbon stocks in Eucalyptus globulus Labill. Plantations induced by different water and nutrient availability. For. Ecol. Manag. 2002, 171, 75–85. [Google Scholar] [CrossRef]
- Olmedo, G.F.; Guevara, M.; Gilabert, H.; Montes, C.R.; Arellano, E.C.; Barría-Knopf, B.; Gárate, F.; Mena-Quijada, P.; Acuña, E.; Bown, H.E.; et al. Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile. Forests 2020, 11, 1063. [Google Scholar] [CrossRef]
- Köppen, W. Grundriss der Klimakunde; Walter de Gruyter: Berlin, Germany, 1931. [Google Scholar]
- FSCC. Manual IIIa: Sampling and Analysis of Soil. ICP Forests. In Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of air Pollution on Forests; UN/ECE ICP Forests Programme Coordinating Centre: Hamburg, Germany, 2006. [Google Scholar]
- RAIZ. Vinte Anos a Criar Conhecimento Para a Bioeconomia de Base Florestal 1996–2016. 2019. Available online: https://20-anos-de-i-d-do-raiz-1996-2016 (accessed on 19 January 2024).
- ISO 10694; Soil Quality—Determination of Organic and Total Carbon After dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Pires, F.P.; Duffy, D.; Martins, J.C. The INFOSOLO database as a first step towards the development of a soil information system in Portugal. CATENA 2017, 158, 390–412. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of soil Analysis, Part 4. Physical Methods; Dane, J.H., Topp, G.C., Eds.; SSSA Book Ser. 5; SSSA: Madison, WI, USA, 2002; pp. 255–294. [Google Scholar]
- Hollis, J.M.; Hannam, J.; Bellamy, P.H. Empirically-derived pedotransfer functions for predicting bulk density in European soils. Eur. J. Soil Sci. 2012, 63, 96–109. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Eve, M.D.; Paustian, K. Uncertainty in estimating land-use and management impacts on soil organic carbon storage for U.S. agricultural lands between 1982 and 1997. Glob. Chang. Biol. 2003, 9, 1521–1542. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Haug, S.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob. Chang. Biol. 2012, 18, 2233–2245. [Google Scholar] [CrossRef]
- SROA. Carta de Solos Reprodução da Carta Apresentada à FAO—1971; Agência Portuguesa do Ambiente, I.P.: Amadora, Portugal, 2010. [Google Scholar]
- Gonçalves, J.A.; Morgado, A. Use of the SRTM DEM as a geo-referencing tool by elevation matching. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 879–883. [Google Scholar]
- Aitchison, J. The single principle of compositional data analysis, continuing fallacies, confusions and misunderstandings and some suggested remedies. In Proceedings of the CoDaWork’08, Girona, Spain, 27–30 May 2008; pp. 1–28. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Pereira, J.; Mateus, J.; Aires, L.; Pita, G.; Pio, C.; David, J.S.; Andrade, V.; Banza, J.; David, T.S.; Paço, T.A.; et al. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—The effect of drought. Biogeosciences 2007, 4, 791–802. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Gómez-Rey, M.; Madeira, M.; González-Prieto, S.; Coutinho, J. Soil C and N dynamics within a precipitation gradient in Mediterranean eucalypt plantations. Plant Soil 2010, 336, 157–171. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118–127. [Google Scholar] [CrossRef]
- Baritz, R.; Seufert, G.; Montanarella, L.; Van Ranst, E. Carbon concentrations and stocks in forest soils of Europe. For. Ecol. Manag. 2010, 260, 262–277. [Google Scholar] [CrossRef]
- Rodeghiero, M.; Rubio, A.; Díaz-Pinés, E.; Romanyà, J.; Marañón-Jiménez, S.; Levy, G.J.; Fernandez-Getino, A.P.; Sebastià, M.T.; Karyotis, T.; Chiti, T.; et al. Soil carbon in Mediterranean ecosystems and related management problems. In Soil Carbon in Sensitive European Ecosystems; Jandl, R., Rodeghiero, M., Olsson, M., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011; pp. 175–218. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources; First Update; FAO: Rome, Italy, 2006. [Google Scholar]
- Panagos, P.; De Rosa, D.; Liakos, L.; Labouyrie, M.; Borrelli, P.; Ballabio, C. Soil bulk density assessment in Europe. Agric. Ecosyst. Environ. 2024, 364, 108907. [Google Scholar] [CrossRef]
- Fu, P.; Clanton, C.; Demuth, K.M.; Goodman, V.; Griffith, L.; Khim-Young, M.; Maddalena, J.; LaMarca, K.; Wright, L.A.; Schurman, D.W.; et al. Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning. Remote Sens. 2024, 16, 2217. [Google Scholar] [CrossRef]
- de Rigo, D.; Bosco, C.; San-Miguel-Ayanz, J.; Houston Durrant, T.; Barredo, J.I.; Strona, G.; Caudullo, G.; Di Leo, M.; Boca, R. Forest resources in Europe: An integrated perspective on ecosystem services, disturbances and threats. In European Atlas of Forest Tree Species; JRC103181; Publication Office of the European Union: Luxembourg, 2016; pp. 8–19. [Google Scholar]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, eR04S. [Google Scholar] [CrossRef]
Bedrock ID | Bedrock | N | Particle Size Distribution (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Coarse Fraction (>2 mm) | Fine Fraction (<2 mm) | Fine Fraction (<2 mm) Classes | Bulk Density (g cm−3) | ||||||
Coarse Sand | Fine Sand | Silt | Clay | ||||||
1 | Alluvium | 29 | 35.9 | 64.1 | 29.7 | 36.8 | 24.2 | 9.4 | 1.28 |
2 | Sands and gravel | 17 | 34.0 | 66.0 | 30.4 | 41.6 | 15.8 | 12.2 | 1.36 |
3 | Sands, pebbles, poorly consolidated sandstones, clays | 298 | 25.2 | 74.8 | 50.4 | 27.5 | 13.0 | 9.1 | 1.32 |
4 | Arcose sandstones and sandstones | 9 | 35.0 | 65.0 | 55.5 | 26.6 | 8.0 | 9.9 | 1.18 |
5 | Sandstones, more or less marly limestones, sands, gravel, clays | 278 | 31.9 | 68.1 | 55.5 | 26.6 | 8.0 | 9.9 | 1.35 |
6 | Sandstones, conglomerates, limestones, dolomitic limestones, marly limestones, marls | 34 | 30.9 | 69.1 | 63.3 | 22.1 | 6.2 | 8.3 | 1.26 |
7 | Basalts | 2 | 50.3 | 49.7 | 43.5 | 25.0 | 11.7 | 19.8 | 1.15 |
8 | Limestones, dolomitic limestones, marly limestones, marls | 11 | 29.0 | 71.0 | 86.1 | 11.2 | 0.4 | 2.3 | 1.38 |
9 | Plateau gravel pits, Beira Baixa arches, sandstones, limestones | 24 | 29.4 | 70.6 | 43.1 | 32.3 | 13.5 | 11.0 | 1.24 |
10 | Conglomerates, sandstones, white limestones, reddish marls | 5 | 17.0 | 83.0 | 31.7 | 32.6 | 13.2 | 22.5 | 1.34 |
11 | Conglomerates, sandstones, limestones, dolomitic limestones, marly limestones, marls | 36 | 20.1 | 79.9 | 31.7 | 32.6 | 13.2 | 22.5 | 1.29 |
12 | Conglomerates, coal shales, clay shales | 9 | 43.8 | 56.2 | 25.1 | 23.4 | 30.9 | 20.6 | 1.07 |
13 | Dolerites | 4 | 44.5 | 55.5 | 43.5 | 25.0 | 11.7 | 19.8 | 1.36 |
14 | Dunes and aeolian sands | 1 | 10.0 | 90.0 | 50.0 | 47.4 | 0.9 | 1.7 | 1.45 |
15 | Granites and similar rocks | 225 | 27.7 | 72.3 | 46.8 | 31.1 | 12.4 | 9.7 | 1.15 |
16 | Red sandstones (from Silves), conglomerates, marls, limestones generally dolomitic | 3 | 30.7 | 69.3 | 31.7 | 32.6 | 13.2 | 22.5 | 1.27 |
17 | Metavolcanites | 39 | 33.2 | 66.8 | 33.2 | 25.3 | 25.7 | 15.9 | 1.28 |
18 | Granite porphyries | 1 | 61.8 | 38.2 | 46.8 | 31.1 | 12.4 | 9.7 | 1.35 |
19 | Quartziferous porphyries | 2 | 31.0 | 69.0 | 48.2 | 31.6 | 12.1 | 8.1 | 1.34 |
20 | Quartzites | 64 | 51.2 | 48.8 | 22.8 | 35.4 | 24.6 | 17.1 | 1.14 |
21 | Quartzdiorites | 4 | 40.5 | 59.5 | 59.6 | 24.0 | 8.5 | 7.9 | 1.44 |
22 | Nepheline syenites | 2 | 13.0 | 87.0 | 46.8 | 31.1 | 12.4 | 9.7 | 1.28 |
23 | Clay shale, greywacke, sandstone | 438 | 46.4 | 53.6 | 27.2 | 26.1 | 22.8 | 24.0 | 1.22 |
24 | Schists, amphibolites, mica schists, greywacke quartzites, carbonate rocks, gneisses | 19 | 41.7 | 58.3 | 23.5 | 40.2 | 22.5 | 13.9 | 1.23 |
25 | Shale, greywacke | 228 | 50.3 | 49.7 | 28.9 | 38.1 | 19.4 | 13.6 | 1.14 |
26 | Shale, greywacke (shale–greywacke complex) | 682 | 46.5 | 53.5 | 22.7 | 32.2 | 30.9 | 14.3 | 1.10 |
27 | Shales, quartzites, amphibolites | 4 | 48.0 | 52.0 | 47.3 | 24.3 | 12.8 | 15.7 | 1.39 |
Reference Soil Group | N | Bulk Density (g cm−3) | Fine Fraction (<2 mm) (%) | Clay Fraction (<0.002 mm) (%) | SOC (g kg−1) | C Stock (t ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Q25 | Q75 | Mean | Q25 | Q75 | Mean | Q25 | Q75 | Mean | Q25 | Q75 | Mean | Q25 | Q75 | ||
Cambic Calcisols | 22 | 1.22 | 1.16 | 1.29 | 73.8 | 69.0 | 85.0 | 13.9 | 8.3 | 22.5 | 21.7 | 14.3 | 28.4 | 53.7 | 39.5 | 67.2 |
Chromic Cambisols | 30 | 1.29 | 1.23 | 1.36 | 70.7 | 58.4 | 83.4 | 16.3 | 8.3 | 22.5 | 14.8 | 9.8 | 18.4 | 36.9 | 24.5 | 49.0 |
Leptic Calcaric Regosols/Calcaric Chromic Cambisols * | 7 | 1.36 | 1.27 | 1.43 | 57.7 | 56.0 | 56.0 | 9.9 | 9.9 | 9.9 | 10.8 | 5.5 | 17.4 | 22.7 | 13.2 | 36.9 |
Dystric Cambisols | 36 | 1.34 | 1.31 | 1.41 | 69.5 | 62.0 | 85.0 | 10.1 | 9.7 | 9.7 | 11.4 | 6.0 | 13.7 | 28.5 | 13.4 | 35.4 |
Eutric Cambisols | 99 | 1.36 | 1.31 | 1.41 | 69.8 | 62.0 | 81.7 | 10.8 | 9.1 | 9.9 | 10.4 | 6.0 | 13.0 | 26.3 | 15.3 | 34.3 |
Leptic Cambisols (Humic) | 751 | 1.06 | 0.97 | 1.12 | 57.2 | 40.0 | 72.3 | 13.1 | 9.7 | 14.3 | 41.6 | 30.2 | 52.3 | 63.8 | 39.6 | 84.0 |
Eutric Fluvisols | 3 | 1.01 | 0.93 | 1.18 | 56.0 | 56.0 | 56.0 | 9.9 | 9.9 | 9.9 | 52.5 | 25.6 | 65.9 | 90.7 | 50.7 | 110.7 |
Eutric Leptosols/Eutric Lithosols * | 664 | 1.21 | 1.14 | 1.31 | 53.6 | 41.6 | 63.3 | 17.5 | 14.3 | 24.0 | 22.1 | 12.0 | 27.0 | 30.6 | 17.0 | 41.0 |
Leptic Ferric Luvisols/Ferric Luvisols * | 28 | 1.26 | 1.17 | 1.35 | 50.9 | 51.7 | 52.0 | 19.1 | 13.6 | 24.0 | 17.0 | 9.3 | 22.9 | 28.4 | 18.8 | 37.9 |
Albic Gleyic Luvisols | 10 | 1.38 | 1.36 | 1.40 | 77.1 | 69.0 | 90.0 | 11.7 | 9.1 | 13.6 | 8.4 | 6.4 | 9.8 | 21.3 | 14.3 | 28.6 |
Leptic Luvisols/Orthic Luvisols * | 244 | 1.22 | 1.17 | 1.28 | 57.6 | 51.2 | 66.7 | 21.6 | 24.0 | 24.0 | 19.8 | 14.1 | 23.7 | 36.4 | 23.7 | 46.5 |
Chromic Leptic Luvisols /Rhodochromic Luvisols * | 9 | 1.26 | 1.20 | 1.30 | 37.6 | 30.0 | 40.0 | 15.6 | 13.6 | 17.1 | 16.7 | 13.1 | 22.4 | 19.1 | 11.7 | 30.4 |
Calcic Chromic Luvisols | 15 | 1.29 | 1.22 | 1.36 | 69.5 | 60.0 | 78.4 | 15.1 | 9.4 | 22.5 | 15.3 | 8.2 | 20.2 | 37.7 | 23.8 | 59.8 |
Vertic Luvisols | 3 | 1.43 | 1.41 | 1.44 | 52.0 | 52.0 | 52.0 | 11.7 | 7.9 | 13.6 | 4.8 | 4.4 | 5.2 | 10.6 | 9.8 | 11.5 |
Umbric Podzols/Orthic Podzols * | 542 | 1.34 | 1.28 | 1.42 | 71.6 | 62.0 | 85.0 | 9.9 | 9.1 | 9.9 | 12.1 | 5.8 | 15.5 | 29.8 | 17.0 | 36.4 |
Leptosols/Rankers * | 2 | 1.02 | 1.01 | 1.02 | 61.0 | 49.7 | 72.3 | 11.7 | 9.7 | 13.6 | 45.8 | 45.8 | 45.8 | 83.9 | 68.4 | 99.4 |
Plintic Luvisols | 1 | 1.32 | - | - | 60.0 | - | - | 24.0 | - | - | 10.8 | - | - | 25.7 | - | - |
Eutric Leptic Regosols | 1 | 1.41 | - | - | 90.0 | - | - | 9.9 | - | - | 6.4 | - | - | 17.4 | - | - |
Endosalic Gleysols/Gleyic Solonchaks * | 1 | 1.35 | - | - | 95.0 | - | - | 9.9 | - | - | 10.5 | - | - | 40.5 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintela, A.; Ferreira, D.; Fabres, S.; Coutinho, J. A Survey of Organic Carbon Stocks in Mineral Soils of Eucalyptus globulus Labill. Plantations under Mediterranean Climate Conditions. Forests 2024, 15, 1335. https://doi.org/10.3390/f15081335
Quintela A, Ferreira D, Fabres S, Coutinho J. A Survey of Organic Carbon Stocks in Mineral Soils of Eucalyptus globulus Labill. Plantations under Mediterranean Climate Conditions. Forests. 2024; 15(8):1335. https://doi.org/10.3390/f15081335
Chicago/Turabian StyleQuintela, Ana, Daniela Ferreira, Sérgio Fabres, and João Coutinho. 2024. "A Survey of Organic Carbon Stocks in Mineral Soils of Eucalyptus globulus Labill. Plantations under Mediterranean Climate Conditions" Forests 15, no. 8: 1335. https://doi.org/10.3390/f15081335
APA StyleQuintela, A., Ferreira, D., Fabres, S., & Coutinho, J. (2024). A Survey of Organic Carbon Stocks in Mineral Soils of Eucalyptus globulus Labill. Plantations under Mediterranean Climate Conditions. Forests, 15(8), 1335. https://doi.org/10.3390/f15081335