Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visual Inspection and Sampling of Plant Material
2.2. RNA Isolation and cDNA Synthesis
2.3. Virus Detection
2.4. Sequencing
2.5. RNA-Seq Analyses
3. Results
3.1. Visual Inspection of Ash Trees Revealed Diversity of Leaf Symptoms
3.2. ASaV Is Associated with Specific Leaf Symptoms
3.3. Viruses Are Widely Distributed in Each Stand
3.4. Sequence Analyses Reveals Distinct Groups of Cytorhabdoviruses
3.5. Novel Viruses Are Occurring in the Seed Plantations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rumbou, A.; Vainio, E.J.; Büttner, C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021, 9, 1730. [Google Scholar] [CrossRef] [PubMed]
- Rehanek, M.; Karlin, D.G.; Bandte, M.; Al Kubrusli, R.; Nourinejhad Zarghani, S.; Candresse, T.; Büttner, C.; von Bargen, S. The Complex World of Emaraviruses—Challenges, Insights, and Prospects. Forests 2022, 13, 1868. [Google Scholar] [CrossRef]
- Büttner, C.; Landgraf, M.; Fernandez, H.; von Bargen, S.; Bandte, M. Virus Diseases of Forest and Urban Trees. In Forest Microbiology—Tree Diseases and Pests; Asiegbu, F.O., Kovalchuk, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 3, ISBN 9780443186943. [Google Scholar]
- Takahashi, H.; Fukuhara, T.; Kitazawa, H.; Kormelink, R. Virus Latency and the Impact on Plants. Front. Microbiol. 2019, 10, 2764. [Google Scholar] [CrossRef] [PubMed]
- Schoelz, J.E.; Stewart, L.R. The Role of Viruses in the Phytobiome. Annu. Rev. Virol. 2018, 5, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, J.; Wulf, A.; Leonhard, S. Erster Nachweis von Chalara fraxinea in Deutschland—Ein Verursacher neuartiger Schäden an Eschen. J. Cultiv. Plants 2007, 59, 121–123. [Google Scholar]
- Langer, G.J.; Fuchs, S.; Osewold, J.; Peters, S.; Schrewe, F.; Ridley, M.; Kätzel, R.; Bubner, B.; Grüner, J. FraxForFuture—Research on European ash dieback in Germany. J. Plant Dis. Prot. 2022, 129, 1285–1295. [Google Scholar] [CrossRef]
- Hamelin, F.M.; Allen, L.J.S.; Prendeville, H.R.; Hajimorad, M.R.; Jeger, M.J. The evolution of plant virus transmission pathways. J. Theor. Biol. 2016, 396, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Preuß, A.; Hauskeller, H.M. Samenplantagen bilden entscheidende Grundlage für die Zukunft. Waldi 2022, 1, 12–13. Available online: https://www.nw-fva.de/fileadmin/nwfva/publikationen/pdf/paul_2022_samenplantagen_bilden_entscheidende.pdf (accessed on 28 December 2023).
- Cooper, J.I. Arabis Mosaic Vims, a Cause of Chlorotic Symptoms in Leaves of Fraxinus excelsior L. Plant Pathol. 1975, 24, 114–116. [Google Scholar] [CrossRef]
- Hamacher, J.; Quadt, A. Light- and Electron Microscopic Studies of Cherry Leaf Roll Virus (CLRV) on European Ash (Fraxinus excelsior L.). J. Phytopathol. 1991, 131, 215–226. [Google Scholar] [CrossRef]
- Fuchs, M.; Hily, J.M.; Petrzik, K.; Sanfaçon, H.; Thompson, J.R.; van der Vlugt, R.; Wetzel, T. and ICTV Report Consortium. ICTV Virus Taxonomy Profile: Secoviridae. J. General. Virol. 2022, 103, 001807. [Google Scholar]
- Rehanek, M. (Humboldt-Universität Berlin, Berlin, Germany); Köpke, K. (Humboldt-Universität Berlin, Berlin, Germany); von Bargen, S. (Humboldt-Universität Berlin, Berlin, Germany); Büttner, C. (Humboldt-Universität Berlin, Berlin, Germany). Unpublished work.
- Gaskin, T.R.; Tischendorf, M.; Günther, I.; Rehanek, M.; Büttner, C.; von Bargen, S. Characterization of a Novel Emaravirus Affecting Ash Species (Fraxinus spp.) in Europe. Forests 2021, 12, 1574. [Google Scholar] [CrossRef]
- Svanella-Dumas, L.; Faure, C.; Marais, A.; Candresse, T. First report of ash shoestring-associated virus (ASaV) infecting European ash (Fraxinus excelsior L.) in France. Plant Dis. 2022, 107. [Google Scholar] [CrossRef]
- Navarro, B.; Loconsole, G.; Giampetruzzi, A.; Aboughanem-Sabanadzovic, N.; Ragozzino, A.; Ragozzino, E.; Di Serio, F. Identification and characterization of privet leaf blotch-associated virus, a novel idaeovirus. Mol. Plant Pathol. 2017, 18, 925–936. [Google Scholar] [CrossRef]
- ICTV Official Taxonomic Resources. Available online: https://ictv.global (accessed on 5 December 2023).
- Köpke, K.; Rumbou, A.; von Bargen, S.; Büttner, C. Identification of the Coding-Complete Genome Sequence of a Novel Cytorhabdovirus in Tilia cordata Showing Extensive Leaf Chloroses. Microbiol. Resour. Announc. 2023, 12, e00053-23. [Google Scholar] [CrossRef]
- Bejerman, N.; Dietzgen, R.G.; Debat, H. Novel tri-segmented rhabdoviruses: A data mining expedition unveils the cryptic diversity of cytorhabdoviruses. Viruses 2023, 15, 2402. [Google Scholar] [CrossRef]
- Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Menzel, W.; Jelkmann, W.; Maiss, E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 2002, 99, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 1999, 41, 95–98. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbour Joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Porfido, C.; Köpke, K.; Allegretta, I.; Bandte, M.; von Bargen, S.; Rybak, M.; Falkenberg, G.; Mimmo, T.; Cesco, S.; Büttner, C.; et al. Combining micro- and portable-XRF as a tool for fast identification of virus infections in plants: The case study of ASa-Virus in Fraxinus ornus L. Talanta 2023, 262, 124680. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.; Rumbou, A.; Diez, J.J.; Büttner, C. Forest Tree Virome as a Source of Tree Diseases and Biological Control Agents. Curr. For. Rep. 2024, 10, 153–174. [Google Scholar] [CrossRef]
- Rehanek, M.; von Bargen, S.; Bandte, M.; Karlin, D.G.; Büttner, C. A novel emaravirus comprising five RNA segments is associated with ringspot disease in oak. Arch. Virol. 2021, 166, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Rumbou, A.; Candresse, T.; von Bargen, S.; Büttner, C. Next-Generation Sequencing Reveals a Novel Emaravirus in Diseased Maple Trees from a German Urban Forest. Front. Microbiol. 2021, 11, 621179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Favara, G.M.; Oliveira, F.F.; Ferro, C.G.; Kraide, H.D.; Carmo, E.Y.N.; Bello, V.H.; Ribeiro-Junior, M.R.; Krause-Sakate, R.; Kitajima, E.W.; Rezende, J.A.M. Infection of groundnut ringspot virus in Plumeria pudica characterized by irregular virus distribution and intermittent expression of symptoms. Front. Plant Sci. 2023, 14, 1202139. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.M.; Rowland, D.L.; Faircloth, W.H. Comparison of ELISA and RT-PCR assays for the detection of Tomato spotted wilt virus in peanut. Peanut Sci. 2009, 36, 133–137. [Google Scholar] [CrossRef]
- Yang, X.; Huang, J.; Liu, C.; Chen, B.; Zhang, T.; Zhou, G. Rice Stripe Mosaic Virus, a Novel Cytorhabdovirus Infecting Rice via Leafhopper Transmission. Front. Microbiol. 2017, 7, 2140. [Google Scholar] [CrossRef]
- Jackson, A.O.; Dietzgen, R.G.; Goodin, M.M.; Bragg, J.N.; Deng, M. Biology of plant rhabdoviruses. Annu. Rev. Phytopathol. 2005, 43, 623–660. [Google Scholar] [CrossRef] [PubMed]
- Karasev, A.V. Genetic Diversity and Evolution of Closteroviruses. Annu. Rev. Phytopathol. 2000, 38, 293–324. [Google Scholar] [CrossRef] [PubMed]
- Maree, H.J.; Almeida, R.P.; Bester, R.; Chooi, K.M.; Cohen, D.; Dolja, V.V.; Fuchs, M.F.; Golino, D.A.; Jooste, A.E.; Martelli, G.P.; et al. Grapevine leafroll-associated virus 3. Front. Microbiol. 2013, 4, 82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rana, T.; Chandel, V.; Kumar, Y.; Ram, R.; Hallan, V.; Zaidi, A.A. Molecular variability analyses of Apple chlorotic leaf spot virus capsid protein. J. Biosci. 2010, 35, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Veerakone, S.; Liefting, L.W.; Lebas, B.S.M.; Ward, L. First Report of Cherry leaf roll virus in Hydrangea macrophylla. Plant Dis. 2012, 96, 463. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, T.; Jardak, R.; Meunier, L.; Ghorbel, A.; Reustle, G.M.; Krczal, G. Simultaneous RT/PCR detection and differentiation of arabis mosaic and grapevine fanleaf nepoviruses in grapevines with a single pair of primers. J. Virol. Methods 2002, 101, 63–69. [Google Scholar] [CrossRef] [PubMed]
Stand | Federal State | Location Type | Geographical Location |
---|---|---|---|
Emmendingen | Baden-Württemberg | seed plantation | 48°6′38.50″ N, 7°52′20.49″ E |
Schorndorf | Baden-Württemberg | seed plantation | 48°46′35.59″ N, 9°25′31.00″ E |
Kaisheim | Bavaria | seed production site | 48°48′20.83″ N, 10°47′33.34″ E |
Grabenstätt | Bavaria | clone archive | 47°50′28.62″ N, 12°30′41.87″ E |
Melzower Forst | Brandenburg | seed production site | 53°11′10.86″ N, 13°57′14.30″ E |
Sample Pool | Contig Number | Size (nt) | Best Match in BLASTx (Accession Number, Virus Genus/Family) | Query Coverage (%) | E-Value | Sequence Identity (%) |
---|---|---|---|---|---|---|
H0812 Emmendingen leaf | C7043 | 2473 | GKSV * (QDC33513.1, trichovirus/Betaflexiviridae) | 69 | 6 × 10−11 | 46 |
C7684 | 2352 | GKSV (QCZ35721.1, trichovirus/Betaflexiviridae) | 29 | 2 × 10−92 | 64 | |
C11444 | 1809 | GKSV (QTF33920.1, trichovirus/Betaflexiviridae) | 99 | 5 × 10−172 | 50 | |
C1134 | 5370 | GLRaV-1 *1 (AHB87103.1, ampelovirus/Closteroviridae) | 21 | 5 × 10−45 | 47 | |
C2658 | 3981 | GLRaV-1 (QBZ78745.1, ampelovirus/Closteroviridae) | 38 | 0.0 | 56 | |
C6357 | 2625 | GLRaV-1 (AXL94955.1, ampelovirus/Closteroviridae) | 64 | 10−158 | 45 | |
C10707 | 1894 | GLRaV (ADJ95800.1, ampelovirus/Closteroviridae) | 31 | 3 × 10−72 | 84 | |
C27877 | 727 | OLYaV *2 (UXN85457.1, olivavirus/Closteroviridae) | 89 | 4 × 10−87 | 57 | |
H0813 Schorndorf leaf ** | C3977 | 2987 | ACLSV *3 (UCJ00976.1, trichovirus/Betaflexiviridae) | 95 | 6 × 10−104 | 33 |
C6446 | 2309 | GKSV (QDC33518.1, trichovirus/Betaflexiviridae) | 64 | 0.0 | 60 | |
C9306 | 1838 | GKSV (QEV82110.1, trichovirus/Betaflexiviridae) | 99 | 3 × 10−154 | 46 | |
C164 | 10733 | PAVA *4 (YP_010086802.1, ampelovirus/Closteroviridae) | 14 | 10−143 | 49 | |
C540 | 7259 | PAVA (YP_010086802.1, ampelovirus/Closteroviridae) | 17 | 10−101 | 46 | |
C779 | 6068 | GLRaV-1 (AHB87153.1, ampelovirus/Closteroviridae) | 21 | 10−49 | 40 | |
C9012 | 1878 | OLYaV (QOK36435.1, olivavirus/Closteroviridae) | 78 | 2 × 10−143 | 47 | |
C21850 | 830 | OLYaV (UXN85457.1, olivavirus/Closteroviridae) | 27 | 10−30 | 77 | |
C28227 | 594 | OLYaV (QOK36430.1, olivavirus/Closteroviridae) | 99 | 2 × 10−78 | 67 | |
C31337 | 524 | OLYaV (UXN85452.1, olivavirus/Closteroviridae) | 99 | 10−83 | 82 | |
H0815 Schorndorf flower | C159 | 5434 | PAVA (YP_010086802.1, ampelovirus/Closteroviridae) | 28 | 9 × 10−144 | 49 |
C499 | 3343 | GLRaV-13 (BDX29264.1, ampelovirus/Closteroviridae) | 6 | 4 × 10−17 | 51 | |
C2134 | 1878 | GLRaV-1 (ARP51762.1, ampelovirus/Closteroviridae) | 45 | 10−106 | 62 | |
C5190 | 1191 | GLRaV-3 (AOS89854.1, ampelovirus/Closteroviridae) | 98 | 4 × 10−81 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehanek, M.; Al Kubrusli, R.; Köpke, K.; von Bargen, S.; Büttner, C. Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior. Forests 2024, 15, 1379. https://doi.org/10.3390/f15081379
Rehanek M, Al Kubrusli R, Köpke K, von Bargen S, Büttner C. Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior. Forests. 2024; 15(8):1379. https://doi.org/10.3390/f15081379
Chicago/Turabian StyleRehanek, Marius, Rim Al Kubrusli, Kira Köpke, Susanne von Bargen, and Carmen Büttner. 2024. "Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior" Forests 15, no. 8: 1379. https://doi.org/10.3390/f15081379
APA StyleRehanek, M., Al Kubrusli, R., Köpke, K., von Bargen, S., & Büttner, C. (2024). Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior. Forests, 15(8), 1379. https://doi.org/10.3390/f15081379