Predicting the Population Size and Potential Habitat Distribution of Moschus berezovskii in Chongqing Based on the MaxEnt Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Distribution Data
2.3. Selection of Environmental Variable Data
2.4. MaxEnt Model Parameter Optimization
2.5. Integrating the Population Size Estimation with MaxEnt Model
3. Results
3.1. The Optimal Model Selection and Accuracy Evaluation
3.2. Analysis of Critical Environmental Factor Variables
3.3. Potential Habitat Distribution of M. berezovskii
3.4. Population Size Estimation
4. Discussion
4.1. The Major Environmental Factors Affecting M. berezovskii Distribution
4.2. Spatial Distribution and Population Size of M. berezovskii in Potential Suitable Areas
4.3. Study Limitations and the Scope for Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ceballos, G.; Ehrlich, P.R.; Dirzo, R. Biological Annihilation via the Ongoing Sixth Mass Extinction Signaled by Vertebrate Population Losses and Declines. Proc. Natl. Acad. Sci. USA 2017, 114, E6089–E6096. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of Climate Change on the Future of Biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Lino, A.; Fonseca, C.; Rojas, D.; Fischer, E.; Pereira, M.J.R. A Meta-Analysis of the Effects of Habitat Loss and Fragmentation on Genetic Diversity in Mammals. Mamm. Biol. 2019, 94, 69–76. [Google Scholar] [CrossRef]
- Pearce, J.L.; Boyce, M.S. Modelling Distribution and Abundance with Presence-only Data. J. Appl. Ecol. 2006, 43, 405–412. [Google Scholar] [CrossRef]
- Fan, Z.; Li, W.; Jin, J.; Cui, K.; Yan, C.; Peng, C.; Jian, Z.; Bu, P.; Price, M.; Zhang, X.; et al. The Draft Genome Sequence of Forest Musk Deer (Moschus berezovskii). Gigascience 2018, 7, giy038. [Google Scholar] [CrossRef]
- Cai, R.; Shafer, A.B.A.; Laguardia, A.; Lin, Z.; Liu, S.; Hu, D. Recombination and Selection in the Major Histocompatibility Complex of the Endangered Forest Musk Deer (Moschus berezovskii). Sci. Rep. 2015, 5, 17285. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.V.; Viet, D.P.; Tien, T.V.; Nguyen, A.; Van, C.P.; Tilker, A. New Records of the Forest Musk Deer Moschus berezovskii in Viet Nam Revealed by Camera Traps. Oryx 2021, 55, 494–495. [Google Scholar] [CrossRef]
- Green, M.J.B. The Distribution, Status and Conservation of the Himalayan Musk Deer Moschus chrysogaster. Biol. Conserv. 1986, 35, 347–375. [Google Scholar] [CrossRef]
- Feng, H.; Wang, L.; Cao, F.; Ma, J.; Tang, J.; Feng, C.; Su, Z. Forest Musk Deer (Moschus berezovskii) in China: Research and Protection. J. Vertebr. Biol. 2023, 72, 22067. [Google Scholar] [CrossRef]
- Li, N.; Pacheco-Fabig, M.; Arréllaga, M.M. 19. International Union for the Conservation of Nature (IUCN). Yearb. Int. Environ. Law 2014, 25, 585–606. [Google Scholar] [CrossRef]
- Peng, J.; Peng, J.; Deng, Y.; Huang, P.; Gao, H.; Sun, N.; Wang, X.; Yuan, X.; Zhou, H.; Zhang, C. Estimating Population Size of Forest Musk Deer (Moschus berezovskii) in Chongqing Jinfoshan National Nature Reserve. For. Sci. Technol. 2018, 3, 30–32. [Google Scholar] [CrossRef]
- Chapman, D.S.; Scalone, R.; Štefanić, E.; Bullock, J.M. Mechanistic Species Distribution Modeling Reveals a Niche Shift during Invasion. Ecology 2017, 98, 1671–1680. [Google Scholar] [CrossRef]
- Case, M.J.; Lawler, J.J. Integrating Mechanistic and Empirical Model Projections to Assess Climate Impacts on Tree Species Distributions in Northwestern North America. Glob. Chang. Biol. 2017, 23, 2005–2015. [Google Scholar] [CrossRef]
- Hao, M.; Aidoo, O.F.; Qian, Y.; Wang, D.; Ding, F.; Ma, T.; Tettey, E.; Ninsin, K.D.; Osabutey, A.F.; Borgemeister, C. Global Potential Distribution of Oryctes Rhinoceros, as Predicted by Boosted Regression Tree Model. Glob. Ecol. Conserv. 2022, 37, e02175. [Google Scholar] [CrossRef]
- Jȩdrzejewski, W.; Niedziałkowska, M.; Nowak, S.; Jȩdrzejewska, B. Habitat Variables Associated with Wolf (Canis Lupus) Distribution and Abundance in Northern Poland. Divers. Distrib. 2004, 10, 225–233. [Google Scholar] [CrossRef]
- Ramírez-León, M.R.; García-Aguilar, M.C.; Romo-Curiel, A.E.; Ramírez-Mendoza, Z.; Fajardo-Yamamoto, A.; Sosa-Nishizaki, O. Habitat Suitability of Cetaceans in the Gulf of Mexico Using an Ecological Niche Modeling Approach. PeerJ 2021, 9, e10834. [Google Scholar] [CrossRef]
- Blanco-Sacristán, J.; Johansen, K.; Duarte, C.M.; Daffonchio, D.; Hoteit, I.; McCabe, M.F. Mangrove Distribution and Afforestation Potential in the Red Sea. Sci. Total Environ. 2022, 843, 157098. [Google Scholar] [CrossRef]
- Yunsheng, W. Application of ROC Curve Analysis in Evaluating the Performance of Alien Species’ Potential Distribution Models. Biodivers. Sci. 2007, 15, 365. [Google Scholar] [CrossRef]
- Zeng, J.; Hu, J.; Shi, Y.; Li, Y.; Guo, Z.; Wang, S.; Song, S. Effects of Climate Change on the Habitat of the Leopard (Panthera pardus) in the Liupanshan National Nature Reserve of China. Animals 2022, 12, 1866. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-N.; Zhao, Q.; Guo, M.-H.; Lu, C.; Huang, F.; Wang, Z.-Z.; Niu, J.-F. Predicting the Potential Distribution of the Endangered Plant Cremastra appendiculata (Orchidaceae) in China under Multiple Climate Change Scenarios. Forests 2022, 13, 1504. [Google Scholar] [CrossRef]
- Bang, M.; Sohn, D.; Kim, J.J.; Choi, W.; Jang, C.J.; Kim, C. Future Changes in the Seasonal Habitat Suitability for Anchovy (Engraulis japonicus) in Korean Waters Projected by a Maximum Entropy Model. Front. Mar. Sci. 2022, 9, 922020. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Su, K.; Bi, G.; Chen, H.; Liu, X.; Yang, Q. Spatiotemporal Characteristics of Rural Restructuring Evolution and Driving Forces in Mountainous and Hilly Areas. Land 2022, 11, 848. [Google Scholar] [CrossRef]
- Ma, Q.; Wan, L.; Shi, S.; Wang, Z. Impact of Climate Change on the Distribution of Three Rare Salamanders (Liua shihi, Pseudohynobius jinfo, and Tylototriton wenxianensis) in Chongqing, China, and Their Conservation Implications. Animals 2024, 14, 672. [Google Scholar] [CrossRef]
- Jianfeng, W.U.; Cao, G.; Zhang, F.; Li, W.; Wang, H. Analysis of Vegetation Coverage Change Characteristics in Chongqing Based on MODIS—NDVI Data. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012187. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, M.; Tong, S.; Liu, Y.; Zhang, D.; Zhu, G.; Lyu, X. Evolution of Potential Spatial Distribution Patterns of Carex Tussock Wetlands Under Climate Change Scenarios, Northeast China. Chin. Geogr. Sci. 2022, 32, 142–154. [Google Scholar] [CrossRef]
- Anderson, R.P.; Raza, A. The Effect of the Extent of the Study Region on GIS Models of Species Geographic Distributions and Estimates of Niche Evolution: Preliminary Tests with Montane Rodents (Genus nephelomys) in Venezuela. J. Biogeogr. 2010, 37, 1378–1393. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next Generation Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander Jr, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Xue, Y.; Lin, C.; Wang, Y.; Zhang, Y.; Ji, L. Ecological Niche Complexity of Invasive and Native Cryptic Species of the Bemisia Tabaci Species Complex in China. J. Pest. Sci. 2022, 95, 1245–1259. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM Eval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, X.; Xie, W.; Wang, R.; Feng, C.; Ma, L.; Li, Q.; Yang, Q.; Wang, H. Predicting the Potential Distribution of the Fall Armyworm Spodoptera Frugiperda (J.E. Smith) under Climate Change in China. Glob. Ecol. Conserv. 2022, 33, e01994. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-Source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Fan, Z.-F.; Zhou, B.-J.; Ma, C.-L.; Gao, C.; Han, D.-N.; Chai, Y. Impacts of Climate Change on Species Distribution Patterns of Polyspora Sweet in China. Ecol. Evol. 2022, 12, e9516. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Liu, C.; Hou, Y.; Yang, S.; Wang, L.; Zhang, X. Potential Suitable Habitat of Two Economically Important Forest Trees (Acer truncatum and Xanthoceras sorbifolium) in East Asia under Current and Future Climate Scenarios. Forests 2021, 12, 1263. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The Effect of Sample Size and Species Characteristics on Performance of Different Species Distribution Modeling Methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, B.; Liu, X.; Yuan, Q.; Xiao, X.; Zhou, T. Maximum Entropy Modeling for the Prediction of Potential Plantation Distribution of Arabica Coffee under the CMIP6 Mode in Yunnan, Southwest China. Atmosphere 2022, 13, 1773. [Google Scholar] [CrossRef]
- Clark, J.; Wang, Y.; August, P.V. Assessing Current and Projected Suitable Habitats for Tree-of-Heaven along the Appalachian Trail. Phil. Trans. R. Soc. B 2014, 369, 20130192. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; White, M.; Newell, G. Selecting Thresholds for the Prediction of Species Occurrence with Presence-Only Data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Xue, W.; Jiang, H.; Xu, H. Population density of Moschus berezovskii in Zibaishan Nature Reserve of Feng County, Shaanxi. J. Zhejiang For. Coll. 2006, 5, 70–74. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, J.; Peng, J. Population Density Research on Forest Musk Deer (Moschus berezovskii) of Baiyu Country. J. Sichuan Teach Coll. 1989, 8, 329–336. [Google Scholar] [CrossRef]
- Li, Y.; Shao, W.; Huang, S.; Zhang, Y.; Fang, H.; Jiang, J. Prediction of Suitable Habitats for Sapindus Delavayi Based on the MaxEnt Model. Forests 2022, 13, 1611. [Google Scholar] [CrossRef]
- Burke, A. Classification and Ordination of Plant Communities of the Naukluft Mountains, Namibia. J. Veg. Sci. 2001, 12, 53–60. [Google Scholar] [CrossRef]
- Zhao, Y.; Tomita, M.; Hara, K.; Fujihara, M.; Yang, Y.; Da, L. Effects of Topography on Status and Changes in Land-Cover Patterns, Chongqing City, China. Landsc. Ecol. Eng. 2014, 10, 125–135. [Google Scholar] [CrossRef]
- Gao, X.; Bu, S.; Zheng, X. Integrating Species Distribution Models to Estimate the Population Size of Forest Musk Deer (Moschus berezovskii) in the Central Qinling Mountains of Shaanxi. Diversity 2023, 15, 1071. [Google Scholar] [CrossRef]
- Funghi, C.; Heim, R.H.J.; Schuett, W.; Griffith, S.C.; Oldeland, J. Estimating Food Resource Availability in Arid Environments with Sentinel 2 Satellite Imagery. PeerJ 2020, 8, e9209. [Google Scholar] [CrossRef]
- Li, Z.; Khattak, R.H.; Han, X.; Zhang, N.; Wu, J.; Liu, Z.; Teng, L. Distribution Update of Water Deer (Hydropotes inermis) and Prediction of Their Potential Distribution in Northeast China. Sci. Rep. 2023, 13, 5610. [Google Scholar] [CrossRef]
- Lin, H.; Zheng, Q.; Shen, L.; Wang, G.; Liu, R.; Zhang, X.; Qi, J.; Zhang, A.; Meng, X. Assessment of habitat suitability in autumn for wild alpine musk deer in Xinglongshan National Nature Reserve with MaxEnt model. Chin. J. Ecol. 2024, 43, 299–304. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, X.; Feng, J.; Yang, Q.; Feng, Z.; Xia, L.; Bartoš, L. Review of the Distribution, Status and Conservation of Musk Deer in China. Folia Zool. Praha 2004, 53, 129–140. [Google Scholar]
- Wu, J.; Zhou, L.; Mu, L. Summer habitat selection by Siberian musk deer (Moschus moschiferus) in Tonghe forest area in the Lesser Khingan Mountains. Acta Theriol. Sin. 2006, 26, 44–48. [Google Scholar] [CrossRef]
- Singh, P.B.; Saud, P.; Cram, D.; Mainali, K.; Thapa, A.; Chhetri, N.B.; Poudyal, L.P.; Baral, H.S.; Jiang, Z. Ecological Correlates of Himalayan Musk Deer Moschus Leucogaster. Ecol. Evol. 2019, 9, 4–18. [Google Scholar] [CrossRef]
- Wang, W.; He, L.; Liu, B.; Li, L.; Wei, N.; Zhou, R.; Qi, L.; Liu, S.; Hu, D. Feeding Performance and Preferences of Captive Forest Musk Deer While on a Cafeteria Diet. Folia Zool. 2015, 64, 151–160. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Q.; Zheng, C.; Hu, J.; Wang, R.; Jiang, G. Research on the suitable habitat for Moschus berezovskii based on maximum entropy model (MaxEnt) in climatic background. Hubei Agric. Sci. 2023, 62, 218–223. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, J.; Gao, H.; Cai, Z.; Zhou, X.; Li, S.; Zhang, T. Musk Deer (Moschus spp.) Face Redistribution to Higher Elevations and Latitudes under Climate Change in China. Sci. Total Environ. 2020, 704, 135335. [Google Scholar] [CrossRef]
- Pfeffer, S.E.; Spitzer, R.; Allen, A.M.; Hofmeester, T.R.; Ericsson, G.; Widemo, F.; Singh, N.J.; Cromsigt, J.P.G.M. Pictures or Pellets? Comparing Camera Trapping and Dung Counts as Methods for Estimating Population Densities of Ungulates. Remote Sens. Ecol. Conserv. 2018, 4, 173–183. [Google Scholar] [CrossRef]
- Falcy, M.R.; Estades, C.F. Effectiveness of Corridors Relative to Enlargement of Habitat Patches. Conserv. Biol. 2007, 21, 1341–1346. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The Effect of Climate Change on the Richness Distribution Pattern of Oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744, 140786. [Google Scholar] [CrossRef]
- Boulangeat, I.; Gravel, D.; Thuiller, W. Accounting for Dispersal and Biotic Interactions to Disentangle the Drivers of Species Distributions and Their Abundances. Ecol. Lett. 2012, 15, 584–593. [Google Scholar] [CrossRef] [PubMed]
Code | Description | Unit |
---|---|---|
BIO7 | Annual temperature range (BIO5–BIO6) | Degree Celsius (°C) |
BIO13 | Precipitation of wettest month | Millimeter (mm) |
BIO14 | Precipitation of driest month (coefficent of variation) | Millimeter (mm) |
Ele | Elevation of the distribution points of M. berezovskii | Meter (m) |
Asp | Aspect of the distribution points of M. berezovskii | Degree (°) |
Slo | Slope of the distribution points of M. berezovskii | Degree (°) |
Veg | Vegetation type of the distribution points of M. berezovskii | - |
NDVI | Normalized Difference Vegetation Index | - |
Land-use | Land-use type | - |
Dis_river | Distance to the nearest river | Meter (m) |
Dis_road | Distance to the nearest road | Meter (m) |
Dis_resident | Distance to the nearest residential area | Meter (m) |
Environmental Variables | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|
elevation | 36.5 | 31 |
NDVI | 16.6 | 17.7 |
slope | 11.8 | 16.9 |
land-use | 7.6 | 1.7 |
bio7 | 6.1 | 0.3 |
bio14 | 4.9 | 7.1 |
bio13 | 4.8 | 6.2 |
vegetation | 3.7 | 1.5 |
dis_resident | 2.6 | 4.3 |
dis_river | 2.3 | 6.8 |
dis_road | 1.8 | 4.4 |
aspect | 1.4 | 2.1 |
Region | Population Density (Individuals/km2) | Highly Suitable Habitat Area (km2) | Population Quantity (Individuals) |
---|---|---|---|
Chengkou | 0.15 ± 0.08 | 454.83 | 68 ± 36 |
Wuxi | 0.24 ± 0.13 | 651.04 | 156 ± 84 |
Kaizhou | 0.25 ± 0.09 | 265.01 | 66 ± 24 |
Nanchuan | 0.43 ± 0.12 | 495.00 | 213 ± 59 |
Jiangjin | 0.34 ± 0.09 | 289.60 | 98 ± 27 |
Qijiang | 0.08 ± 0.03 | 238.70 | 19 ± 7 |
Wushan | 0.22 ± 0.11 | 250.82 | 55 ± 29 |
Wanzhou | 0.23 ± 0.07 | 55.85 | 13 ± 4 |
Fuling | 0.04 ± 0.02 | 115.83 | 5 ± 2 |
Fengdu | 0.18 ± 0.05 | 450.01 | 81 ± 24 |
Zhongxian | 0.19 ± 0.04 | 23.27 | 4 ± 1 |
Shizhu | 0.04 ± 0.02 | 1084.88 | 43 ± 22 |
Yunyang | 0.11 ± 0.03 | 44.25 | 5 ± 1 |
Qianjiang | 0.09 ± 0.04 | 90.43 | 8 ± 3 |
Fengjie | 0.19 ± 0.06 | 237.81 | 45 ± 15 |
Pengshui | 0.03 ± 0.01 | 170.90 | 5 ± 2 |
Liangping | 0.17 ± 0.06 | 14.08 | 2 ± 1 |
Wulong | 0.09 ± 0.02 | 529.09 | 50 ± 11 |
Total | - | 5461.40 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Liu, H.; Cui, X.; Peng, J.; Wang, X.; Shen, L.; Zhang, M.; Chen, L.; Li, X. Predicting the Population Size and Potential Habitat Distribution of Moschus berezovskii in Chongqing Based on the MaxEnt Model. Forests 2024, 15, 1449. https://doi.org/10.3390/f15081449
Liu Q, Liu H, Cui X, Peng J, Wang X, Shen L, Zhang M, Chen L, Li X. Predicting the Population Size and Potential Habitat Distribution of Moschus berezovskii in Chongqing Based on the MaxEnt Model. Forests. 2024; 15(8):1449. https://doi.org/10.3390/f15081449
Chicago/Turabian StyleLiu, Qing, Huilin Liu, Xiaojuan Cui, Jianjun Peng, Xia Wang, Ling Shen, Minqiang Zhang, Lixia Chen, and Xin Li. 2024. "Predicting the Population Size and Potential Habitat Distribution of Moschus berezovskii in Chongqing Based on the MaxEnt Model" Forests 15, no. 8: 1449. https://doi.org/10.3390/f15081449
APA StyleLiu, Q., Liu, H., Cui, X., Peng, J., Wang, X., Shen, L., Zhang, M., Chen, L., & Li, X. (2024). Predicting the Population Size and Potential Habitat Distribution of Moschus berezovskii in Chongqing Based on the MaxEnt Model. Forests, 15(8), 1449. https://doi.org/10.3390/f15081449