Evaluation of Shoot Collection Timing and Hormonal Treatment on Seedling Rooting and Growth in Four Poplar Genomic Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Design
2.2. Measurements
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effect of Shoot Collection Time on Seedling Rooting
3.2. Effect of Shoot Collection Time on Seedling Height Growth
3.3. Growth Stimulants and Clone Effect on Rooting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stobrawa, K. Poplars (Populus spp.): Ecological role, applications and scientific perspectives in the 21st Century. Balt. For. 2014, 20, 204–213. [Google Scholar]
- Komán, S.; Németh, R.; Báder, M. An overview of the current situation of European poplar cultures with a main focus on Hungary. Appl. Sci. 2023, 13, 12922. [Google Scholar] [CrossRef]
- Confalonieri, M.; Balestrazzi, A.; Bisoffi, S.; Carbonera, D. In vitro culture and genetic engineering of Populus spp.: Synergy for forest tree improvement. Plant Cell Tissue Organ Cult. 2003, 72, 109–138. [Google Scholar] [CrossRef]
- Pliura, A.; Suchockas, V.; Sarsekova, D.; Gudynaite, V. Genotypic variation and heritability of growth and adaptive traits, and adaptation of young poplar hybrids at northern margins of natural distribution of Populus nigra in Europe. Biomass Bioenergy 2014, 70, 513–529. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, H.; Li, S.; Yang, C.; Jiang, J.; Liu, G. The rooting of poplar cuttings: A review. New For. 2014, 45, 21–34. [Google Scholar] [CrossRef]
- Baba, K.; Kurita, Y.; Mimura, T. Wood structure of Populus alba L. formed in a shortened annual cycle system. J. Wood Sci. 2018, 64, 1–5. [Google Scholar] [CrossRef]
- Ermel, F.F.; Vizoso, S.; Charpentier, J.P.; Allemand, C.J.; Catesson, A.M.; Couée, I. Mechanisms of primordium formation during adventitious root development from walnut cotyledon explants. Planta 2000, 211, 563–574. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Wiese, A.H. Date of shoot collection, genotype, and original shoot position affect early rooting of dormant hardwood cuttings of Populus. Silvae Genet. 2006, 55, 169–182. [Google Scholar] [CrossRef]
- Polle, A.; Klein, T.; Kettner, C. Impact of cadmium on young plants of Populus euphratica and P. canescens, two poplar species that differ in stress tolerance. New For. 2013, 44, 13–22. [Google Scholar] [CrossRef]
- Dickmann, D.I. Poplar culture in North America; NRC Research Press, National Research Council of Canada: Ottawa, ON, Canada, 2001; pp. 1–42. [Google Scholar]
- Frey, B.R.; Lieffers, V.J.; Landhausser, S.M.; Comeau, P.G.; Greenway, K.J. An analysis of sucker regeneration of trembling aspen. Can. J. For. Res. 2003, 33, 1169–1179. [Google Scholar] [CrossRef]
- Harfouche, A.; Baoune, N.; Merazga, H. Main and interaction effects of factors on softwood cutting of white poplar (Populus alba L.). Silvae Genet. 2007, 56, 287–294. [Google Scholar] [CrossRef]
- Shibuya, T.; Tsukuda, S.; Tokuda, A.; Shizaki, S.; Endo, R.; Kitaya, Y. Effects of warming basal ends of Carolina poplar (Populus canadensis Moench) softwood cutting at controlled low-air-temperature on their root growth and leaf damage after planting. J For. Res. 2013, 18, 279–284. [Google Scholar] [CrossRef]
- Wiese, A.H.; Zalesny, J.A.; Donner, D.M.; Zalesny, R.S. Bud removal affects shoot, root, and callus development of hardwood Populus Cuttings. Silvae Genet. 2006, 3, 141–148. [Google Scholar] [CrossRef]
- Saini, S.; Sharma, I.; Kaur, N.; Pati, P.K. Auxin: A master regulator in plant root development. Plant Cell Rep. 2013, 32, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Benkova, E.; Ivanchenko, M.G.; Friml, J.; Shishkova, S.; Joseph, G.D. A morphogenetic trigger: Is there an emerging concept in plant developmental biology? Trends Plant Sci. 2009, 14, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Mironova, V.; Omelyanchuk, N.; Yosiphone, G.; Fadeev, S.; Kolchanov, N.; Mjolsness, E.; Likhoshvai, V. A plausible mechanism for auxin patterning along the developing root. BMC Syst. Biol. 2010, 4, 98. [Google Scholar] [CrossRef] [PubMed]
- De Klerk, G.J.; Arnholdt, S.B.; Lieberei, R.; Neumann, K. Regeneration of roots, shoots and embryos: Physiological, biochemical and molecular aspects. Biol. Plant. 1997, 39, 53–66. [Google Scholar] [CrossRef]
- Simon, S.; Petrášek, J. Why plants need more than one type of auxin. Plant Sci. 2011, 180, 454–460. [Google Scholar] [CrossRef]
- Werner, T.; Holst, K.; Pors, Y.; Guivarch, A.; Mustroph, A.; Chriqui, D.; Grimm, B.; Schmulling, T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 2008, 59, 2659–2672. [Google Scholar] [CrossRef]
- Kuroha, T.; Ueguchi, C.; Sakakibara, H.; Satoh, S. Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant Cell Physiol. 2006, 47, 234–243. [Google Scholar] [CrossRef]
- Dello, I.R.; Nakamura, K.; Moubayidin, L.; Perilli, S.; Taniguchi, M.; Morita, M.T.; Aoyama, T.; Costantino, P.; Sabatini, S. A genetic framework for the control of cell division and differentiation in the root meristem. Science 2008, 322, 1380–1384. [Google Scholar]
- Swain, S.M.; Singh, D.P. Tall tales from sly dwarves: Novel functions of gibberellins in plant development. Trends Plant Sci. 2005, 10, 123–129. [Google Scholar] [CrossRef]
- Busov, V.B.; Meilan, R.; David, W.; Rood, S.B.; Ma, C.; Tschaplinski, T.J.; Strauss, S.H. Transgentic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 2006, 2, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.O.; Pernas, M.; Carol, R.; Dolan, L. Ethylene modulates stem cells division in the Arabidopsis thaliana root. Science 2007, 317, 505–510. [Google Scholar]
- Miško Atkūrimo ir Įveisimo Nuostatai [Regulations for Reforestation and Afforestation], 2008 April, No. 108301MISAK00D1-199, Vilnius. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.318353/asr (accessed on 23 August 2024). (In Lithuanian).
- SAS Institute Inc. SAS/STAT® User’s Guide, version 9.4; SAS Institute Incorporated: Cary, NC, USA, 2016. [Google Scholar]
- Veierskov, B. Relations between carbohydrate and adventitious rooting. In Adventitious Root Formation in Cutting; Davis, T.D., Haissig, B.E., Sankhla, N., Eds.; Discorides Press: Portland, OR, USA, 1988; pp. 70–78. [Google Scholar]
- Lopez, G.; Ahmadi, S.H.; Amelung, W.; Athmann, M.; Ewert, F.; Gaiser, T.; Gocke, M.I.; Kautz, T.; Postma, J.; Rachmilevitch, S.; et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci. 2023, 13, 1067498. [Google Scholar] [CrossRef]
- Coleman, G.D.; Englert, J.M.; Chen, T.H.H.; Fuchigami, L.H. Physiological and environmental requirements for poplar (Populus deltoides) bark storage protein degradation. Plant Physiol. 1993, 102, 53–59. [Google Scholar] [CrossRef]
- Leakey, R.R.B.; Dick, J.M.; Newton, A.C. Stock plant-derived variation in rooting ability: The source of physiologically youth. In Mass Production Technology for Genetically Improved Fast Growing Tree Species. Vol. I. AFOCEL=IUFRO Conference, Bordeaux, France, 14–18 September 1992; Association Foret-Cellulose: Paris, France, 1992; pp. 171–178. [Google Scholar]
- Haissig, B.E. Carbohydrate relations during propagation of cuttings from sexually mature Pinus banksiana trees. Tree Physiol. 1989, 5, 319–328. [Google Scholar] [CrossRef]
- Sun, J.; Li, H.; Chen, H.; Wang, T.; Quan, J.; Bi, H. The effect of hormone types, concentrations, and treatment times on the rooting traits of Morus ‘Yueshenda 10’ softwood cuttings. Life 2023, 13, 1032. [Google Scholar] [CrossRef]
- Martínez, L.D.O.; Mendoza, O.J.; Valenzuela, M.C.; Serrano, P.A.; Olarte, S.J. Efecto de las giberelinas sobre el crecimiento y calidad de plántulas de tomate. Biotecnia 2013, 15, 56–60. [Google Scholar] [CrossRef]
- Keswani, C.; Singh, S.P.; Cueto, L.; García-Estrada, C.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Singh, S.P.; Angel Blázquez, M.; Sansinenea, E. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 8549–8565. [Google Scholar] [CrossRef]
- Sampedro-Guerrero, J.; Vives-Peris, V.; Gomez-Cadenas, A.; Clausell-Terol, C. Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance. Plant Methods 2023, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhao, L.; Guo, W.; Yu, Y.; Tao, L.; Zhang, L.; Song, X.; Huang, W.; Cheng, L.; Chen, J.; et al. Exogenous application of phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii × P. nigra. Int. J. Mol. Sci. 2019, 20, 792. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Li, Y.; Cheng, Z.; Zheng, X.; Cai, C.; Wang, H.; Lu, K.; Zhu, C.; Ding, Y. Important factors controlling gibberellin homeostasis in plant height regulation. J. Agric. Food Chem. 2023, 71, 15895–15907. [Google Scholar] [CrossRef] [PubMed]
Date of Shoot Collection | Rooting of Cuttings (%) | |||
---|---|---|---|---|
P. deltoides × P. nigra (Agathe-F) | P. maximowiczii × P. trichocarpa (Arges) | P. deltoides × P. trichocarpa (Donk) | P. × canadensis (F-448) | |
1 March | 88.6 ± 3.4 | 81.3 ± 3.1 | 80.1 ± 3.1 | 87.4 ± 3.4 |
10 March | 88.4 ± 3.3 | 85.0 ± 3.0 | 81.9 ± 3.0 | 90.6 ± 3.5 |
30 March | 93.4 ± 3.5 | 86.5 ± 3.1 | 91.6 ± 3.1 | 91.9 ± 3.5 |
10 April | 95.7 ± 3.6 | 83.1 ± 3.0 | 93.7 ± 3.2 | 93.0 ± 3.2 |
20 April | 93.1 ± 3.5 | 80.5 ± 2.9 | 86.4 ± 3.0 | 90.0 ± 3.4 |
Date of Shoot Collection | Height (cm) | |||
---|---|---|---|---|
P. deltoides × P. nigra (Agathe-F) | P. maximowiczii × P. trichocarpa (Arges) | P. deltoides × P. trichocarpa (Donk) | P. × canadensis (F-448) | |
1 March | 124.47 ± 11.71 | 122.21 ± 11.15 | 84.78 ± 12.31 | 115.28 ± 12.15 |
10 March | 132.22 ± 10.20 | 118.63 ± 11.17 | 90.77 ± 16.22 | 120.48 ± 10.27 |
30 March | 131.77 ± 21.11 | 123.81 ± 14.31 | 89.18 ± 11.05 | 123.42 ± 11.12 |
10 April | 135.93 ± 19.09 | 121.91 ± 14.61 | 104.23 ± 21.18 | 118.38 ± 12.23 |
20 April | 123.04 ± 21.24 | 115.28 ± 21.79 | 85.09 ± 15.26 | 113.76 ± 17.77 |
Treatment, Concentration (%) | Rooting of Cuttings (%) | |||
---|---|---|---|---|
P. deltoides × P. nigra (Agathe-F) | P. maximowiczii × P. trichocarpa (Arges) | P. deltoides × P. trichocarpa (Donk) | P. × canadensis (F-448) | |
Control | 88.2 ± 3.3 | 82.7 ± 3.9 | 89.6 ± 3.6 | 80.6 ± 5.3 |
IBA *, 0.002 | 97.7 ± 1.9 | 90.1 ± 2.3 | 95.9 ± 1.9 | 88.8 ± 4.7 |
IAA **, 0.02 | 92.5 ± 2.4 | 87.7 ± 3.6 | 90.8 ± 1.4 | 91.2 ± 1.3 |
IAA **, 0.2 | 84.2 ± 5.6 | 82.2 ± 2.4 | 87.4 ± 4.7 | 82.4 ± 5.7 |
Cinnamic acid, 0.0001 | 100.0 ± 0.0 | 88.3 ± 4.6 | 93.1 ± 2.6 | 87.4 ± 3.6 |
Cinnamic acid, 0.005 | 91.6 ± 2.8 | 84.3 ± 4.8 | 89.6 ± 2.5 | 81.2 ± 4.3 |
Treatment, Concentration (%) | Height (cm) | |||
---|---|---|---|---|
P. deltoides × P. nigra (Agathe-F) | P. maximowiczii × P. trichocarpa (Arges) | P. deltoides × P. trichocarpa (Donk) | P. × canadensis (F-448) | |
Control | 119.47 ± 13.74 | 100.24 ± 13.19 | 85.78 ± 17.33 | 119.18 ± 15.15 |
IBA *, 0.002 | 138.22 ± 11.21 | 128.63 ± 12.18 | 94.77 ± 19.62 | 125.41 ± 14.77 |
IAA **, 0.02 | 131.77 ± 21.11 | 127.87 ± 18.30 | 89.08 ± 14.55 | 133.47 ± 21.12 |
IAA **, 0.2 | 112.36 ± 15.22 | 112.35 ± 18.28 | 85.55 ± 14.99 | 99.74 ± 19.05 |
Cinnamic acid, 0.0001 | 134.93 ± 9.59 | 121.91 ± 14.61 | 105.13 ± 20.13 | 127.33 ± 17.33 |
Cinnamic acid, 0.005 | 111.14 ± 20.44 | 115.27 ± 14.77 | 86.19 ± 16.56 | 113.96 ± 14.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnagirytė-Kabašinskienė, I.; Suchockas, V.; Urbaitis, G.; Žemaitis, P.; Muraškienė, M.; Čiuldienė, D.; Černiauskas, V.; Armoška, E.; Vigricas, E. Evaluation of Shoot Collection Timing and Hormonal Treatment on Seedling Rooting and Growth in Four Poplar Genomic Groups. Forests 2024, 15, 1530. https://doi.org/10.3390/f15091530
Varnagirytė-Kabašinskienė I, Suchockas V, Urbaitis G, Žemaitis P, Muraškienė M, Čiuldienė D, Černiauskas V, Armoška E, Vigricas E. Evaluation of Shoot Collection Timing and Hormonal Treatment on Seedling Rooting and Growth in Four Poplar Genomic Groups. Forests. 2024; 15(9):1530. https://doi.org/10.3390/f15091530
Chicago/Turabian StyleVarnagirytė-Kabašinskienė, Iveta, Vytautas Suchockas, Gintautas Urbaitis, Povilas Žemaitis, Milda Muraškienė, Dovilė Čiuldienė, Valentinas Černiauskas, Emilis Armoška, and Egidijus Vigricas. 2024. "Evaluation of Shoot Collection Timing and Hormonal Treatment on Seedling Rooting and Growth in Four Poplar Genomic Groups" Forests 15, no. 9: 1530. https://doi.org/10.3390/f15091530
APA StyleVarnagirytė-Kabašinskienė, I., Suchockas, V., Urbaitis, G., Žemaitis, P., Muraškienė, M., Čiuldienė, D., Černiauskas, V., Armoška, E., & Vigricas, E. (2024). Evaluation of Shoot Collection Timing and Hormonal Treatment on Seedling Rooting and Growth in Four Poplar Genomic Groups. Forests, 15(9), 1530. https://doi.org/10.3390/f15091530