Assessment of Mango Canopy Water Content Through the Fusion of Multispectral Unmanned Aerial Vehicle (UAV) and Sentinel-2 Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Measurements
- (1)
- Leaf area index
- (2)
- Leaf sampling and water content measurement
- (3)
- Sentinel-2 remote sensing data
2.3. Image Fusion
2.4. Selection of Spectral Indices for Vegetation Water Content Retrieval
2.5. Machine Learning and Data Simulation
2.6. Accuracy Validation
3. Results
3.1. Accuracy Assessment of MS UAV Bands Reflectance
3.2. Accuracy Assessment of Sentinel-2 Satellite Image Fusion
3.3. Estimation of Mango Canopy Water Content Based on Spectral Reflectance and Vegetation Indices
3.4. Assessment of Mango Canopy Water Content
4. Discussion
4.1. Accuracy Assessment of MS UAV Band Reflectance
4.2. Evaluation of Image Fusion Methods
4.3. Sensitivities of the Spectral Reflectance, Vegetation Indices, and Canopy Moisture Indicators
4.4. Analysis of the Model Prediction Result
4.5. Spatial Distribution Differences of Mango Canopy Moisture Indicators
5. Conclusions
- (1)
- The feasibility of the AWT method for fusing MS UAV and Sentinel-2 satellite data was demonstrated by comparing them with the measured spectral data, highlighting the effectiveness of the fused data. Additionally, this study confirmed the effectiveness of the Sen2Res plugin in SNAP software for reconstructing Sentinel-2 imagery from 20 m to 10 m resolution, further enhancing its utility in high-resolution vegetation monitoring.
- (2)
- Among the five machine learning methods, the GABP model exhibited the best estimation performance. The addition of the fused Sentinel-2 data to MS UAV data improved the R2 values for estimating the FMC, EWT, and CWC by 0.066, 0.179, and 0.210, respectively.
- (3)
- The spatial distribution analysis of FMC, EWT, and CWC indicates that FMC exhibits limited spatial variability, while EWT and CWC display pronounced spatial heterogeneity. Factors such as slope, canopy coverage, and human activities are identified as the primary drivers of these differences. Among the three, CWC is particularly sensitive to environmental changes, providing a more comprehensive reflection of the actual canopy water content.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mwinuka, P.R.; Mbilinyi, B.P.; Mbungu, W.B.; Mourice, S.K.; Mahoo, H.F.; Schmitter, P. The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agric. Water Manag. 2021, 245, 106584. [Google Scholar] [CrossRef]
- Juenger, T.E.; Verslues, P.E. Time for a drought experiment: Do you know your plants’ water status? Plant Cell 2022, 35, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, Y.; Yang, Q.; Wang, X.; Cui, N. Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS. Agric. Water Manag. 2021, 245, 106650. [Google Scholar] [CrossRef]
- Yi, Q.-X.; Bao, A.-M.; Wang, Q.; Zhao, J. Estimation of leaf water content in cotton by means of hyperspectral indices. Comput. Electron. Agric. 2013, 90, 144–151. [Google Scholar] [CrossRef]
- Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-spectral resolution data for determining leaf water content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 388–397. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B.; et al. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geosci. Remote Sens. Mag. 2021, 9, 200–231. [Google Scholar] [CrossRef]
- Ruffault, J.; Limousin, J.-M.; Pimont, F.; Dupuy, J.-L.; De Càceres, M.; Cochard, H.; Mouillot, F.; Blackman, C.J.; Torres-Ruiz, J.M.; Parsons, R.A.; et al. Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought. N. Phytol. 2023, 237, 1256–1269. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, J.; Zhang, X.; Zhang, J.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice. Agric. Water Manag. 2023, 289, 108521. [Google Scholar] [CrossRef]
- Cheng, M.; Sun, C.; Nie, C.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; Meng, L.; Jia, X.; Liu, Y.; et al. Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize. Agric. Water Manag. 2023, 287, 108442. [Google Scholar] [CrossRef]
- Allen, W.A.; Gausman, H.W.; Richardson, A.J.; Cardenas, R. Water and Air Changes in Grapefruit, Corn, and Cotton Leaves with Maturation1. Agron. J. 1971, 63, 392–394. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Chen, J.; Zhang, Z.; Fu, Q.; Bian, J.; Cui, T.; Ma, Y. Retrieval of cotton plant water content by UAV-based vegetation supply water index (VSWI). Int. J. Remote Sens. 2020, 41, 4389–4407. [Google Scholar] [CrossRef]
- Miao, J.; Wang, J.; Zhao, D.; Shen, Z.; Xiang, H.; Gao, C.; Li, W.; Cui, L.; Wu, G. Modeling strategies and influencing factors in retrieving canopy equivalent water thickness of mangrove forest with Sentinel-2 image. Ecol. Indic. 2024, 158, 111497. [Google Scholar] [CrossRef]
- Hassanpour, R.; Majnooni-Heris, A.; Fard, A.F.; Verrelst, J. Monitoring Biophysical Variables (FVC, LAI, LCab, and CWC) and Cropland Dynamics at Field Scale Using Sentinel-2 Time Series. Remote. Sens. 2024, 16, 2284. [Google Scholar] [CrossRef]
- Vivone, G. Multispectral and hyperspectral image fusion in remote sensing: A survey. Inf. Fusion 2023, 89, 405–417. [Google Scholar] [CrossRef]
- Yang, S.; Wang, M.; Jiao, L. Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis. Inf. Fusion 2012, 13, 177–184. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Q.; Chen, Q.; Liu, X. Variational Pansharpening for Hyperspectral Imagery Constrained by Spectral Shape and Gram–Schmidt Transformation. Sensors 2018, 18, 4330. [Google Scholar] [CrossRef]
- Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1204–1211. [Google Scholar] [CrossRef]
- Bama, B.S.; Sankari, S.G.S.; Kamalam, R.E.J.; Kumar, P.S. New Additive Wavelet Image Fusion Algorithm for Satellite Images. In Pattern Recognition and Machine Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; pp. 313–318. [Google Scholar]
- Dehkordi, R.H.; Pelgrum, H.; Meersmans, J. High spatio-temporal monitoring of century-old biochar effects on evapotranspiration through the ETLook model: A case study with UAV and satellite image fusion based on additive wavelet transform (AWT). GIScience Remote Sens. 2022, 59, 111–141. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Lu, X.; Wan, H.; Zhang, Y.; Zhang, J.; Jin, Z. Inversion of Leaf Water Content of Cinnamomum camphora Based on Preferred Spectral Index and Machine Learning Algorithm. Forests 2023, 14, 2285. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Chen, J.; Huang, R.; Yi, S.; Qin, Y.; You, H.; Han, X.; Zhou, G. High Spatial Resolution Fractional Vegetation Coverage Inversion Based on UAV and Sentinel-2 Data: A Case Study of Alpine Grassland. Remote. Sens. 2023, 15, 4266. [Google Scholar] [CrossRef]
- Pan, Y.; Ren, C.; Liang, Y.; Zhang, Z.; Shi, Y. Inversion of surface vegetation water content based on GNSS-IR and MODIS data fusion. Satell. Navig. 2020, 1, 21. [Google Scholar] [CrossRef]
- Liu, W.; Zhong, Q.; Luo, L. Effects of different irrigation volume co-applied with super absorbent polymers on soil moisture and fruit of mango orchards. Southwest China J. Agric. Sci. 2019, 32, 2378–2382. [Google Scholar] [CrossRef]
- Tu, T.-M.; Su, S.-C.; Shyu, H.-C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [Google Scholar] [CrossRef]
- Brodu, N. Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.M.; Choi, C.Y.; Riley, E.; Thompson, T.L.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Birth, G.S.; Mcvey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Hardisky, M.; Klemas, V.; Smart, A. The Influence of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Radiance of Spartina alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 48, 77–84. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L.; Vogelmann, A.F.; Hoshizaki, T. Remote Detection of Forest Damage: Plant responses to stress may have spectral “signatures” that could be used to map, monitor, and measure forest damage. BioScience 1986, 36, 439–445. [Google Scholar] [CrossRef]
- Deventer, A.v.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Furlanetto, R.H.; Nanni, M.R.; Crusiol, L.G.T.; Silva, G.F.C.; Junior, A.d.O.; Sibaldelli, R.N.R. Identification and quantification of potassium (K+) deficiency in maize plants using an unmanned aerial vehicle and visible/near-infrared semi-professional digital camera. Int. J. Remote Sens. 2021, 42, 8783–8804. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, P.; Meng, F.; Yang, X.; Xu, J.; Cui, Y. Estimation algorithm for chlorophyll-a concentrations in water from hyperspectral images based on feature derivation and ensemble learning. Ecol. Inform. 2022, 71, 101783. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Zhang, K.; Wu, Y. An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape. Soft Comput. 2021, 25, 1751–1776. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8. ISPRS J. Photogramm. Remote Sens. 2023, 205, 206–226. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. Atmos. 2003, 108, 4389. [Google Scholar] [CrossRef]
- Mamaghani, B.; Salvaggio, C. Multispectral Sensor Calibration and Characterization for sUAS Remote Sensing. Sensors 2019, 19, 4453. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Liang, H. Evaluating the effectiveness of fusing remote sensing images with significantly different spatial resolutions for thematic map production. Phys. Chem. Earth Parts A/B/C 2019, 110, 71–80. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Xue, B. A novel method for the definition of central wavelength and spectral bandwidth. Results Phys. 2020, 18, 103327. [Google Scholar] [CrossRef]
- Rajković, D.; Jeromela, A.M.; Pezo, L.; Lončar, B.; Grahovac, N.; Špika, A.K. Artificial neural network and random forest regression models for modelling fatty acid and tocopherol content in oil of winter rapeseed. J. Food Compos. Anal. 2023, 115, 105020. [Google Scholar] [CrossRef]
- Ghulam, A.; Li, Z.-L.; Qin, Q.; Tong, Q.; Wang, J.; Kasimu, A.; Zhu, L. A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index. Sci. China Ser. D Earth Sci. 2007, 50, 1359–1368. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Q.; Cao, X.; Gao, W. The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing. GIScience Remote Sens. 2014, 51, 1–16. [Google Scholar] [CrossRef]
- Scheliga, B.; Tetzlaff, D.; Nuetzmann, G.; Soulsby, C. Assessing runoff generation in riparian wetlands: Monitoring groundwater–surface water dynamics at the micro-catchment scale. Environ. Monit. Assess. 2019, 191, 116. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Yang, W.; Wang, X.; Luo, X.; Ran, P.; Zhang, H. Forest Canopy Water Content Monitoring Using Radiative Transfer Models and Machine Learning. Forests 2023, 14, 1418. [Google Scholar] [CrossRef]
Spectral Band | Image Band | Central Wavelength | Bandwidth |
---|---|---|---|
Blue | 1 | 450 nm | 32 nm |
Green | 2 | 560 nm | 32 nm |
Red | 3 | 650 nm | 32 nm |
Red-edge | 4 | 730 nm | 32 nm |
Near-infrared | 5 | 840 nm | 52 nm |
Lens | 5.74 mm focal length, 62.7° field of view | ||
GNSS | GPS; BeiDou or GLONASS; Galileo | ||
Weight | 1487 g |
Parameters | Max | Min | Mean | Standard Deviation | |
---|---|---|---|---|---|
Spectral sampling points | FMC (%) | 216.123 | 113.965 | 162.135 | 29.615 |
EWT (g/cm2) | 0.026 | 0.012 | 0.019 | 0.003 | |
CWC (g/cm2) | 0.091 | 0.019 | 0.052 | 0.020 | |
Canopy average | FMC (%) | 227.548 | 119.434 | 163.207 | 25.864 |
EWT (g/cm2) | 0.028 | 0.015 | 0.019 | 0.003 | |
CWC (g/cm2) | 0.079 | 0.024 | 0.050 | 0.016 |
No | Index | Formula | S2 | MS UAV | MS UAV + S2 | References |
---|---|---|---|---|---|---|
1 | Normalized difference Vegetation Index (NDVI) | √ | √ | [31] | ||
2 | Simple Ratio Index (SR) | √ | √ | [32] | ||
3 | Enhanced Vegetation Index (EVI) | √ | √ | [33] | ||
4 | Soil-Adjusted Vegetation Index (SAVI) | √ | √ | [34] | ||
5 | Normalized Difference Water Index (NDWI) | √ | √ | [35] | ||
6 | plant senescence reflectance index (PSRI) | √ | √ | [36] | ||
7 | Normalized Difference Infrared Index (NDII) | ) | √ | √ | [37] | |
8 | Normalized Multiband Drought Index (NMDI) | √ | √ | [38] | ||
9 | Modified Normalized Difference Water Index (MNDWI) | √ | √ | [39] | ||
10 | Moisture Stress Index (MSI) | √ | √ | [40] | ||
11 | Normalized Difference Tillage Index (NDTI) | √ | [41] | |||
12 | Shortwave Infrared Difference (SWID) | √ |
Method | Parameter | UAV | UAV + S2_RF_SHAP | UAV + S2_XG_SHAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | ||
RF | FMC | 0.218 | 23.078 | 12.486 | 0.244 | 22.926 | 12.108 | 0.285 | 22.383 | 11.670 |
EWT | 0.222 | 0.003 | 11.667 | 0.255 | 0.003 | 10.354 | 0.335 | 0.002 | 10.522 | |
CWC | −0.099 | 0.018 | 36.126 | 0.045 | 0.016 | 31.540 | 0.105 | 0.016 | 30.943 | |
XGBoost | FMC | 0.192 | 23.435 | 12.088 | 0.196 | 23.741 | 11.295 | 0.265 | 22.807 | 11.151 |
EWT | −0.023 | 0.003 | 12.010 | 0.172 | 0.003 | 10.928 | 0.353 | 0.002 | 9.809 | |
CWC | −0.332 | 0.020 | 41.353 | 0.110 | 0.017 | 30.852 | 0.054 | 0.017 | 32.902 | |
SVM | FMC | 0.197 | 23.171 | 12.106 | 0.227 | 22.173 | 11.178 | 0.340 | 21.456 | 10.862 |
EWT | 0.199 | 0.003 | 10.879 | 0.465 | 0.002 | 8.707 | 0.467 | 0.002 | 8.432 | |
CWC | −0.060 | 0.018 | 34.148 | 0.187 | 0.015 | 27.410 | 0.293 | 0.014 | 24.792 | |
PLS | FMC | 0.256 | 22.087 | 11.664 | 0.393 | 19.768 | 10.298 | 0.405 | 19.925 | 10.034 |
EWT | 0.186 | 0.003 | 11.484 | 0.396 | 0.002 | 8.731 | 0.450 | 0.002 | 8.967 | |
CWC | −0.046 | 0.018 | 35.162 | 0.139 | 0.234 | 27.430 | 0.270 | 0.015 | 22.661 | |
GABP | FMC | 0.679 | 14.898 | 7.536 | 0.745 | 14.397 | 7.227 | 0.724 | 15.443 | 7.636 |
EWT | 0.680 | 0.002 | 7.519 | 0.837 | 0.001 | 5.052 | 0.859 | 0.001 | 4.454 | |
CWC | 0.492 | 0.012 | 24.207 | 0.702 | 0.005 | 7.223 | 0.698 | 0.005 | 7.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Huang, J.; Wu, M.; Qin, T.; Jia, H.; Hao, S.; Jin, J.; Huang, Y.; Pumijumnong, N. Assessment of Mango Canopy Water Content Through the Fusion of Multispectral Unmanned Aerial Vehicle (UAV) and Sentinel-2 Remote Sensing Data. Forests 2025, 16, 167. https://doi.org/10.3390/f16010167
Liu J, Huang J, Wu M, Qin T, Jia H, Hao S, Jin J, Huang Y, Pumijumnong N. Assessment of Mango Canopy Water Content Through the Fusion of Multispectral Unmanned Aerial Vehicle (UAV) and Sentinel-2 Remote Sensing Data. Forests. 2025; 16(1):167. https://doi.org/10.3390/f16010167
Chicago/Turabian StyleLiu, Jinlong, Jing Huang, Mengjuan Wu, Tengda Qin, Haoyi Jia, Shaozheng Hao, Jia Jin, Yuqing Huang, and Nathsuda Pumijumnong. 2025. "Assessment of Mango Canopy Water Content Through the Fusion of Multispectral Unmanned Aerial Vehicle (UAV) and Sentinel-2 Remote Sensing Data" Forests 16, no. 1: 167. https://doi.org/10.3390/f16010167
APA StyleLiu, J., Huang, J., Wu, M., Qin, T., Jia, H., Hao, S., Jin, J., Huang, Y., & Pumijumnong, N. (2025). Assessment of Mango Canopy Water Content Through the Fusion of Multispectral Unmanned Aerial Vehicle (UAV) and Sentinel-2 Remote Sensing Data. Forests, 16(1), 167. https://doi.org/10.3390/f16010167