From Young to Over-Mature: Long-Term Cultivation Effects on the Soil Nutrient Cycling Dynamics and Microbial Community Characteristics Across Age Chronosequence of Schima superba Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Soil Sampling
2.3. Soil Chemical Properties Analysis
2.4. Soil Enzyme Activity Analysis
2.5. Soil Bacterial Community Analysis
2.6. Analysis of Microbial Functional Genes Associated with C, N, P, S Cycling
2.7. Statistic Analyses
3. Results
3.1. Soil Physicochemical Properties
3.2. Soil Enzyme Activities
3.3. Bacterial Communities
3.4. Links Between Soil Physicochemical Properties, Enzyme Activities, and Bacterial Communities
3.5. Absolute Abundance of Soil Bacterial Functional Genes
3.6. Correlations Analysis of Soil Physicochemical Properties and Bacterial Functional Genes Associated with C, N, P, S Cycling
4. Discussion
4.1. Soil Physicochemical Properties Across Different Stand Ages of Schima superba
4.2. Soil Enzyme Activities Across Different Stand Ages of Schima superba
4.3. Soil Bacterial Communities Across Different Stand Ages of Schima superba
4.4. Functional Genes Abundance and Correlations Across Different Stand Ages of Schima superba
4.5. Intearctions Between Soil Properties and Bacterial Community
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunner, A. Stand volume growth varies with age, site index, and stand density—Comments on Stokland. For. Ecol. Manag. 2021, 495, 119329. [Google Scholar] [CrossRef]
- Chang, Y.N.; Zhong, Q.L.; Yang, H.; Xu, C.B.; Hua, W.P.; Li, B.Y. Patterns and driving factors of leaf C, N, and P stoichiometry in two forest types with different stand ages in a mid-subtropical zone. For. Ecosyst. 2022, 9, 100005. [Google Scholar] [CrossRef]
- Wang, L.Y.; Sun, Y.Y.; Li, J.; Tigabu, M.; Xu, Q.L.; Ma, X.Q.; Li, M. Rhizosphere soil nutrients and bacterial community diversity of four broad-leaved trees planted under Chinese fir stands with different stocking density levels. Front. For. Glob. Change 2023, 6, 1135692. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Tuo, D.F.; Wang, C.; Fu, B.J.; Lv, Y.H.; Liu, G.H. Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 2020, 359, 113991. [Google Scholar] [CrossRef]
- Fang, K.; Liu, Y.J.; Zhao, W.Q.; Liu, J.; Zhang, X.Y.; He, H.L.; Liu, Q.; Kou, Y.P. Stand age alters fungal community composition and functional guilds in subalpine Picea asperata plantations. Appl. Soil Ecol. 2023, 188, 104860. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Zhang, X.; Ju, W.; Fang, L. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 2020, 147, 107814. [Google Scholar] [CrossRef]
- Wang, C.Q.; Xue, L.; Jiao, R.Z. Soil organic carbon fractions, C-cycling associated hydrolytic enzymes, and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb.) Hook plantations. For. Ecol. Manag. 2021, 482, 118887. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Hagenbo, A.; Karltun, E.; Lindahl, B.D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 2017, 11, 863–874. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, L.; Xiang, W.H.; Ouyang, S.; Wu, H.L.; Lei, P.F.; Xiao, W.F.; Li, S.G.; Zeng, L.X.; Kuzyakov, Y. Increase of soil nitrogen availability and recycling with stand age of Chinese-fir plantations. For. Ecol. Manag. 2021, 480, 118643. [Google Scholar] [CrossRef]
- Li, J.J.; Dong, L.B.; Fan, M.C.; Shangguan, Z.P. Long-term vegetation restoration promotes lignin phenol preservation and microbial anabolism in forest plantations: Implications for soil organic carbon dynamics. Sci. Total Environ. 2024, 928, 172635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tigabu, M.; Yi, Z.G.; Li, H.T.; Zhuang, Z.; Yang, Z.; Ma, X.Q. Soil parent material and stand development stage effects on labile soil C and N pools in Chinese fir plantations. Geoderma 2019, 338, 247–258. [Google Scholar] [CrossRef]
- Qiu, X.; Peng, D.; Li, W.; Jiang, H. Soil physicochemical properties of Pinus tabuliformis plantations of different ages in Yanqing, Beijing. Chin. J. Appl. Environ. Biol. 2018, 24, 9. [Google Scholar]
- Han, X.; Liu, X.; Li, Z.W.; Li, J.; Yuan, Y.L.; Li, H.; Zhang, L.; Liu, S.N.; Wang, L.X.; You, C.M.; et al. Characteristics of soil organic carbon fractions and stability along a chronosequence of Cryptomeria japonica var. sinensis plantation in the rainy area of western China. Forests 2022, 13, 1663. [Google Scholar] [CrossRef]
- Mangan, S.A.; Schnitzer, S.A.; Herre, E.A.; Mack, K.M.L.; Valencia, M.C.; Sanchez, E.I.; Bever, J.D. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 2010, 466, 752–755. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.P.; An, B.; Ma, X.Q.; Zhang, H.; Liu, Q.G.; Mao, R. The succession patterns and drivers of soil bacterial and fungal communities with stand development in Chinese fir plantations. Plant Soil 2024, 500, 547–569. [Google Scholar] [CrossRef]
- Li, J.W.; Sun, X.Q.; Li, M.; Zou, J.Y.; Bian, H.F. Effects of stand age and soil organic matter quality on soil bacterial and fungal community composition in Larix gmelinii plantations, Northeast China. Land Degrad. Dev. 2022, 33, 1249–1259. [Google Scholar] [CrossRef]
- Wang, C.Q.; Xue, L.; Jiao, R.Z. Stoichiometric imbalances and the dynamics of phosphatase activity and the abundance of phoC and phoD genes with the development of Cunninghamia lanceolata (Lamb.) Hook plantations. Appl. Soil Ecol. 2022, 173, 104373. [Google Scholar] [CrossRef]
- Zhan, Q.W.; Chen, L.; Wu, H.L.; Ouyang, S.; Zeng, Y.L.; Deng, X.W.; Hu, Y.T.; Xiang, W.H. Microbial gene abundance mirrors soil nitrogen mineralization intensity across an age gradient in Chinese-fir plantations. Eur. J. Soil Biol. 2023, 119, 103570. [Google Scholar] [CrossRef]
- Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: Integrating molecular ’omics’ for microbial community profiling. Nat. Rev. Microbiol. 2015, 13, 360–372. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Zuccarini, P.; Sardans, J.; Asensio, L.; Peñuelas, J. Altered activities of extracellular soil enzymes by the interacting global environmental changes. Glob. Change Biol. 2023, 29, 2067–2091. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hamel, C.; Lu, P.A.; Wang, J.Y.; Sun, D.D.; Wang, Y.J.; Lee, S.J.; Gan, G.R.Y. Using enzyme activities as an indicator of soil fertility in grassland-an academic dilemma. Front. Plant Sci. 2023, 14, 1175946. [Google Scholar] [CrossRef] [PubMed]
- García-Saucedo, F.; García-Morote, F.A.; Picazo, M.; Wic, C.; Rubio, E.; López-Serrano, F.R.; Andrés-Abellán, M. Responses of enzymatic and microbiological soil properties to the site index and age gradients in Spanish black pine (Pinus nigra Arn ssp. salzmannii) Mediterranean forests. Forests 2024, 15, 113. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, X.; Jing, X.; Zhu, B.A. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol. Biochem. 2018, 123, 21–32. [Google Scholar] [CrossRef]
- Wang, C.Q.; Xue, L.; Dong, Y.H.; Hou, L.Y.; Wei, Y.H.; Chen, J.Q.; Jiao, R.Z. The development of Chinese fir plantations undergo significant changes in soil microbial metabolic function and enzyme activities. J. For. Res. 2019, 24, 261–265. [Google Scholar] [CrossRef]
- Aprile, F.; Lorandi, R. Evaluation of Cation Exchange Capacity (CEC) in tropical soils using four different analytical methods. J. Agric. Sci. 2012, 4, 278–289. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Z. Research advance on adaptation mechanism of forest tree to low-phosphorus stress and genetics of phosphorus efficiency. For. Res. 2002, 15, 734–740. [Google Scholar]
- Maymon, M.; Martínez-Hidalgo, P.; Tran, S.S.; Ice, T.; Craemer, K.; Anbarchian, T.; Sung, T.; Hwang, L.H.; Chou, M.; Fujishige, N.A.; et al. Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth. Front. Plant Sci. 2015, 6, 784. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Hedo, J.; Cerda, A.; Candel-Perez, D.; Vinegla, B. Unravelling he importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp salzmannii) Forest. Sci. Total Environ. 2016, 562, 145–154. [Google Scholar] [CrossRef]
- Xu, R.; Wang, L.Y.; Zhang, J.; Zhou, J.; Cheng, S.D.; Tigabu, M.; Ma, X.Q.; Wu, P.F.; Li, M. Growth rate and leaf functional traits of four broad-leaved species underplanted in Chinese fir plantations with different tree density levels. Forests 2022, 13, 308. [Google Scholar] [CrossRef]
- Wu, C.; Fan, J.; Xu, Y.; Jiang, B.; Jiao, J.; Yao, L.; Wieser, G. Adaptability analysis of the evergreen pioneer tree species Schima superba to climate change in Zhejiang province. Forests 2023, 14, 2438. [Google Scholar] [CrossRef]
- Wen, X.Y.; Hong, Y.; Zhong, J.H.; Li, L.M.; Ma, Q.Y.; Hu, X.; Han, X.H.; Guo, W.H.; Huang, Y.P.; Zhang, F.P. Assessing the impact of pine wilt disease on aboveground carbon storage in planted Pinus massoniana Lamb. forests via remote sensing. Sci. Total Environ. 2024, 914, 169906. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, Z.; Wang, Z.; Chen, Y.; Wen, Z.; Liu, B.; Tigabu, M. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. BMC Plant Biol. 2020, 20, 354. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ebach, M.C.; Triantafilis, J. Cladistic analysis of Chinese Soil Taxonomy. Geoderma Reg. 2017, 10, 11–20. [Google Scholar] [CrossRef]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Zheng, B.; Zhu, Y.; Sardans, J.; Penuelas, J.; Su, J. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci. China-Life Sci. 2018, 61, 1451–1462. [Google Scholar] [CrossRef]
- Liu, S.; Huang, X.; Mu, H.; Zheng, M.; Kuang, S.; Chen, H.; Xu, Y.; Wang, D.; Liu, H.; Li, X. Biogeography and diversity patterns of functional genes associated with C, N, P, S cycling processes across China classical sea sediments. Sci. Total Environ. 2024, 906, 167678. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, J.; Yao, L. Soil microbial community and physicochemical properties together drive soil organic carbon in Cunninghamia lanceolata plantations of different stand ages. PeerJ 2022, 10, e13873. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ye, J.S.; Pei, J.Y.; Fang, C.; Li, D.F.; Ke, W.B.; Song, X.; Sardans, J.; Peñuelas, J. Initial soil condition, stand age, and aridity alter the pathways for modifying the soil carbon under afforestation. Sci. Total Environ. 2024, 946, 174448. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Duraisamy, V.; Huang, Z.; Guo, F.; Ma, X. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil properties. Geoderma 2017, 306, 127–134. [Google Scholar] [CrossRef]
- Antisari, L.V.; Papp, R.; Vianello, G.; Marinari, S. Effects of Douglas fir stand age on soil chemical properties, nutrient dynamics, and enzyme activity: A Case Study in Northern Apennines, Italy. Forests 2018, 9, 641. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L.; Ouyang, L.; Zhao, X.; Zhao, P. Environmental controls on transpiration of Schima superba trees with different tree sizes under ten years’ climate fluctuations in south subtropics, China. For. Ecol. Manag. 2023, 539, 120995. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, K.; Qin, J.; Ni, L.; Liao, S.; Zeng, D.; Pan, H.; Gu, D. Soil hydrology characteristics among forest type, stand age and successive rotation in Eucalyptus plantations in Southern China. Forests 2024, 15, 423. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Dong, Y.; Hou, L.; Wei, Y.; Chen, J.; Jiao, R. Contrasting effects of Chinese fir plantations of different stand ages on soil enzyme activities and microbial communities. Forests 2019, 10, 11. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, X.; Zhao, P.; Liang, H. Radial Growth-Climate Relationship Varies with Spatial Distribution of Schima superba Stands in Southeast China’s Subtropical Forests. Forests 2023, 14, 1291. [Google Scholar] [CrossRef]
- He, J.; Dai, Q.; Xu, F.; Yan, Y.; Peng, X. Variability in Soil Macronutrient Stocks across a Chronosequence of Masson Pine Plantations. Forests 2022, 13, 17. [Google Scholar] [CrossRef]
- Zheng, L.; Song, W. Phosphorus limitation of trees influences forest soil fungal diversity in China. Forests 2022, 13, 223. [Google Scholar] [CrossRef]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amezaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Qi, K.; Bhusal, D.R.; Huang, J.; Chen, W.; Wu, Q.; Hussain, A.; Pang, X. Soil microbial community and enzymatic activity in soil particle-size fractions of spruce plantation and secondary birch forest. Eur. J. Soil Biol. 2020, 99, 103196. [Google Scholar] [CrossRef]
- Darby, B.A.; Goodale, C.L.; Chin, N.A.; Fuss, C.B.; Lang, A.K.; Ollinger, S.V.; Lovett, G.M. Depth patterns and connections between gross nitrogen cycling and soil exoenzyme activities in three northern hardwood forests. Soil Biol. Biochem. 2020, 147, 107836. [Google Scholar] [CrossRef]
- Aponte, H.; Medina, J.; Butler, B.; Meier, S.; Cornejo, P.; Kuzyakov, Y. Soil quality indices for metal(loid) contamination: An enzymatic perspective. Land Degrad. Dev. 2020, 31, 2700–2719. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Q.; Zhou, H.; Nong, Z.; Ye, S.; Deng, Q. Introduction of Dalbergia odorifera enhances nitrogen absorption on Eucalyptus through stimulating microbially mediated soil nitrogen-cycling. For. Ecosyst. 2021, 8, 59. [Google Scholar] [CrossRef]
- Cao, X.; Mo, Y.; Yan, W.; Zhang, Z.; Peng, Y. Evaluation of soil quality in five ages of Chinese fir plantations in subtropical China based on a structural equation model. Forests 2023, 14, 1217. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Q.; Wang, Y.-P.; Chen, J.; Yu, M.; Fang, X.; He, H.; Chen, J.; Xu, P.; Wang, S.; et al. Linkage of microbial living communities and residues to soil organic carbon accumulation along a forest restoration gradient in southern China. For. Ecosyst. 2021, 8, 57. [Google Scholar] [CrossRef]
- Liao, Z.; Ye, S.; Wang, S. Soil bacterial community structure as affected by stand age in Chinese fir plantations: Insights at the aggregate scale. Land Degrad. Dev. 2023, 34, 389–402. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Yao, Q.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 2016, 95, 212–222. [Google Scholar] [CrossRef]
- Zhang, B.; Penton, C.R.; Xue, C.; Quensen, J.F.; Roley, S.S.; Guo, J.; Garoutte, A.; Zheng, T.; Tiedje, J.M. Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol. Biochem. 2017, 112, 140–152. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Su, W.; Chen, H.; Barberan, A.; Zhao, H.; Yu, M.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X.; et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef] [PubMed]
- Sibanc, N.; Dumbrell, A.J.; Mandic-Mulec, I.; Macek, I. Impacts of naturally elevated soil CO2 concentrations on communities of soil archaea and bacteria. Soil Biol. Biochem. 2014, 68, 348–356. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Zhu, Y.-F.; Yu, H.-C.; Zhang, Q.; Chen, F. Effects of vegetation types on carbon cycle functional genes in reclaimed soil from open pit mines in the Loess Plateau. Huan Jing Ke Xue 2023, 44, 3386–3395. [Google Scholar]
- Gao, Y.; Liang, A.-Z.; Huang, D.-D.; Zhang, Y.; Zhang, Y.; Wang, Y.; Zhang, S.-X.; Chen, X.-W. Effects of long-term no-tillage on the functional potential of microorganisms involved in the nitrogen, phosphorus and sulfur cycles of black soil. J. Appl. Ecol. 2023, 34, 913–920. [Google Scholar]
- Mori, Y.; Tada, C.; Fukuda, Y.; Nakai, Y. Diversity of sulfur-oxidizing bacteria at the surface of cattle manure composting assessed by an analysis of the sulfur oxidation gene soxB. Microbes Environ. 2020, 35, ME18066. [Google Scholar] [CrossRef]
- Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C. Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 2011, 111, 338–349. [Google Scholar] [CrossRef]
- Bizuti, D.T.G.; Casagrande, J.C.; Soares, M.R.; Sartorio, S.D.; Brugnaro, C.; César, R.G. The effect of calcium on the growth of native species in a tropical forest hotspot. Iforest-Biogeosci. For. 2018, 11, 221–226. [Google Scholar] [CrossRef]
- Fahey, T.J.; Heinz, A.K.; Battles, J.J.; Fisk, M.C.; Driscoll, C.T.; Blum, J.D.; Johnson, C.E. Fine root biomass declined in response to restoration of soil calcium in a northern hardwood forest. Can. J. For. Res. 2016, 46, 738–744. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.C.; Guan, X.; Zhang, W.D.; Yang, Q.P.; Zheng, W.H.; Zeng, Z.Q.; Wang, S.L. Liming shift above- and belowground functional traits of Chinese fir from conservative to acquisitive. Environ. Exp. Bot. 2024, 219, 105642. [Google Scholar] [CrossRef]
- Marinos, R.E.; Bernhardt, E.S. Soil carbon losses due to higher pH offset vegetation gains due to calcium enrichment in an acid mitigation experiment. Ecology 2018, 99, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, X.; Gong, J.; Liu, L.; Yi, Y. Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS ONE 2018, 13, e0194080. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Zhou, P.Y.; Luo, B.; Ye, S.M. Stoichiometric characteristics of medium- and micro-elements (Ca, Mg, Fe, and Mn) in soil aggregates as affected by stand age in Chinese fir plantations. Land Degrad. Dev. 2022, 33, 3991–4003. [Google Scholar] [CrossRef]
Stand Age | Altitude/m | Aspects/° | Density/Stems·hm−2 | Tree Height/m | DBH/cm | Main Understory Vegetation |
---|---|---|---|---|---|---|
10 | 210–232 | 25–28 | 2307 | 5.93 ± 0.32 a | 6.97 ± 0.37 a | Indocalamus tessellatus, Spatholobus suberectus |
15 | 200–245 | 26–29 | 1966 | 7.98 ± 0.13 a | 10.09 ± 0.23 b | I. tessellatus, Lophatherum gracile, Cibotium barometz |
27 | 194–225 | 25–29 | 405 | 15.23 ± 0.91 b | 21.73 ± 1.27 c | I. tessellatus, S. suberectus, C. barometz |
55 | 180–220 | 25–26 | 345 | 17.58 ± 1 c | 22.13 ± 1.24 c | L. gracile, Phoebe zhennan, Tetrastigma hemsleyanum |
64 | 190–215 | 26–28 | 210 | 22.71 ± 0.97 d | 32.06 ± 1.23 d | Aralia spinifolia Merr, T. hemsleyanum, Phoebe bournei |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, Y.; Wang, L.; Zhang, X.; Jiang, Y.; Tigabu, M.; Wu, P.; Li, M.; Hu, X. From Young to Over-Mature: Long-Term Cultivation Effects on the Soil Nutrient Cycling Dynamics and Microbial Community Characteristics Across Age Chronosequence of Schima superba Plantations. Forests 2025, 16, 172. https://doi.org/10.3390/f16010172
Sun Y, Zhang Y, Wang L, Zhang X, Jiang Y, Tigabu M, Wu P, Li M, Hu X. From Young to Over-Mature: Long-Term Cultivation Effects on the Soil Nutrient Cycling Dynamics and Microbial Community Characteristics Across Age Chronosequence of Schima superba Plantations. Forests. 2025; 16(1):172. https://doi.org/10.3390/f16010172
Chicago/Turabian StyleSun, Yangyang, Yajing Zhang, Liyan Wang, Xinyu Zhang, Yuhui Jiang, Mulualem Tigabu, Pengfei Wu, Ming Li, and Xia Hu. 2025. "From Young to Over-Mature: Long-Term Cultivation Effects on the Soil Nutrient Cycling Dynamics and Microbial Community Characteristics Across Age Chronosequence of Schima superba Plantations" Forests 16, no. 1: 172. https://doi.org/10.3390/f16010172
APA StyleSun, Y., Zhang, Y., Wang, L., Zhang, X., Jiang, Y., Tigabu, M., Wu, P., Li, M., & Hu, X. (2025). From Young to Over-Mature: Long-Term Cultivation Effects on the Soil Nutrient Cycling Dynamics and Microbial Community Characteristics Across Age Chronosequence of Schima superba Plantations. Forests, 16(1), 172. https://doi.org/10.3390/f16010172