Comprehensive Evaluation of Germplasm Resources in Various Goji Cultivars Based on Leaf Anatomical Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Examination of the Stomata on the Abaxial Epidermis of Goji Leaves
2.2.2. Sampling and Section Making
2.2.3. Analysis of Field Infection Experiments
2.3. Data Processing
3. Results Analysis
3.1. Analysis of Leaf Structural Characteristics of the 36 Tested Cultivars (Lines) of Goji
3.1.1. Differences in Leaf Anatomical Structure
3.1.2. Comparative Analysis of Leaf Stomatal Characteristics
3.1.3. Frozen Section Staining Indicates the Proportion of Wax Content
3.1.4. Correlation Analysis of Anatomical Indices from Leaf Samples Among Goji Cultivar (Line) Germplasm Resources
3.2. Comprehensive Analysis and Evaluation of Resistance of Goji Cultivars (Lines)
3.2.1. The Subordinate Function Approach for Assessing the Stress Resistance of Goji Cultivars (Lines)
3.2.2. Evaluating the Influence of Various Indicators on the Stress Resistance of Goji Cultivars (Lines) Using Principal Component Analysis
3.2.3. Cluster Heat Map Analysis
3.3. Comprehensive Cluster Analysis of 36 Different Cultivars (Lines) of Goji Germplasm Resources
3.4. Aceri Macrodonis Keifer Field Survey Experimental Results
4. Discussion
4.1. Relationship Between Leaf Anatomy and Drought Resistance
4.2. Relationship Between Leaf Anatomical Structure and Cold Resistance
4.3. Relationship Between Leaf Anatomical Structure and Insect Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryu, T.H.; Kang, C.Y.; Jung, Y.B.; Ko, N.Y.; Kwon, H.R.; Seo, M.J.; Yu, Y.M.; Youn, Y.N.; Kim, Y.G. Occurrence patterns of insect pests in the field of Lycium chinense under environment-friendly management. Korean J. Agric. Sci. 2014, 41, 341–350. [Google Scholar] [CrossRef]
- Xu, C.Q.; Liu, S.; Xu, R.; Chen, J.; Cheng, H.Z. Investigation of production status in major Lycium barbarum producing areas of China and some suggestions. China J. Chin. Mat. Med. 2014, 39, 1979–1984. [Google Scholar]
- Xie, J.; Tang, W.; Jin, M.; Li, J.E.; Xie, M.Y. Recent advances in bioactive polysaccharides from Lycium barbarum, Zizyphus jujuba Mill., Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocoll. 2016, 60, 148–160. [Google Scholar] [CrossRef]
- Atanasova, D.Y.; Semerdjieva, I.B. Population density of Phytonomus variabilis hrbst. and Phytodecta fornicata brugg on multifoliolate and trifoliolate alfalfa in relation to anatomical characteristics on their leaves. J. Cent. Eur. Agric. 2009, 10, 321–326. [Google Scholar]
- Nie, S.; Mo, S.; Gao, T.; Bing, Y.; Shen, P.; Kashif, M.; Zhang, Z.; Li, J.; Jiang, C. Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. Sci. Total Environ. 2023, 862, 160930. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.X.; Xiao, Y.B.; Cui, W.Z.; Tan, Q.; Li, Y.; Luo, Y.; Wu, L.; Chen, F.; Li, C.; Ran, C. Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity. Agric. Meteorol. 2023, 342, 109734. [Google Scholar]
- Oliveira, A.F.; de Paula, M.S.; Cruz, M.C.; Almeida, M.O. Response to paclobutrazol application and water deficit on leaf anatomy of two olive tree cultivars. Acta Hortic. 2014, 1057, 51–56. [Google Scholar] [CrossRef]
- Yan, Z.; Ma, T.; Guo, S.; Liu, R.; Li, M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Sci. Hortic. 2021, 280, 109933. [Google Scholar] [CrossRef]
- Shen, H.F.; Zhao, B.; Xu, J.J. Relationship between leaf anatomical structure and heat resistance of 15 Rhododendron cultivars. J. Appl. Ecol. 2016, 27, 3895–3904. [Google Scholar]
- Li, R.X.; Jin, X.L.; Hu, X.J.; Chai, X.Y.; Cai, M.Y.; Luo, F.; Zhang, F. Analysis and comprehensive evaluation on cold resistance of six varieties of Michelia. J. South China Agric. Univ. 2017, 28, 1464–1472. [Google Scholar]
- Guo, X.M.; Liu, J.Z.; Zhai, J.T.; Xiao, X.; Lu, Y.; Li, D.; Pei, S.; Zhang, L. The relationship between leaf anatomical structure and cold resistance of 16 peach varieties. For. Sci. 2015, 51, 33–43. [Google Scholar]
- Ladyzhenko, T. Leaf anatomical structure of Nerium oleander L. as a reflection of its adaption potential on habitat. Mod. Phytomorphol. 2014, 6, 197–200. [Google Scholar]
- Salsinha, Y.C.F.; Maryani; Indradewa, D.; Purwestri, Y.A.; Rachmawati, D. Leaf physiological and anatomical characters contribute to drought tolerance of Nusa tenggara Timur local rice cultivars. J. Crop. Sci. Biotechnol. 2021, 24, 337–348. [Google Scholar] [CrossRef]
- Olbricht, K.; Ludwig, A.; Ulrich, D.; Spangeberg, R.; Guenther, M.; Neinhuis, C. Leaf morphology and anatomy in the genus Fragaria: Implications for resistances. Acta Hortic. 2014, 1049, 269–273. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, L.; Gao, C.; Liao, D.C.; Long, L.; Qiu, J.; Wei, H.; Deng, Q.; Zhou, Y. A comparative study on the leaf anatomical structure of Camellia oleifera in a low-hot valley area in Guizhou Province, China. PLoS ONE 2022, 17, e0262509. [Google Scholar] [CrossRef] [PubMed]
- TB 852-2023; Goji Technical Procedures for Monitoring and Forecasting Diseases and Pests. Ningxia Hui Autonomous Region Market Supervision and Administration Department: Ningxia, China, 2023.
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Quan, Q.; Xin, P.; Li, J.Y.; Wang, J.H.; Kun, A.D. Morphological traits and physiological characteristics in drought tolerance in 20 shrub species on the Qinghai-Xizang Plateau. Chin. J. Plant Ecol. 2014, 38, 562–575. [Google Scholar] [CrossRef]
- Wang, Q.S.; Huang, J.; Chen, C.S.; Wu, G.Y.; Zeng, M.S.; Huang, C.M.; Chen, R.B. Relationship between leaf structure of tea germplasm and its resistance to Aleurocanthus spiniferus (Quaintance). J. Tea Sci. 2009, 29, 60–66. [Google Scholar]
- Xu, H.; Huang, C.; Jiang, X.; Zhu, J.; Gao, X.; Yu, C. Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera Seedling. Acta Hortic. 2022, 8, 494. [Google Scholar] [CrossRef]
- Kerstiens, G. Plant cuticles-an integrated functional approach. J. Exp Bot. 1996, 47, 50–60. [Google Scholar] [CrossRef]
- Post-Beittenmiller, D. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.L.; Fang, J.Y.; Fan, Y.J.; Zhao, K.; Cui, K.M. Anatomical characteristics of leaves and woods of Fagus lucida and their relationship to ecological factors in Mountain Fanjingshan, Guizhou, China. Acta. Sin. 1999, 41, 1002–1009. [Google Scholar]
- Zivcak, M.; Brestic, M.; Balatova, Z.; Drevenakova, P. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosyn. Res. 2013, 117, 529–546. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Klich, M.G. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environ. Exp. Bot. 2000, 44, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, L.; Zeng, R.; Wang, X.; Zhang, H.; Wang, L.; Liu, S.; Wang, X.; Chen, T. Brassinosteroid priming improves Peanut drought tolerance via eliminating inhibition on genes in photosynthesis and hormone signaling. Genes 2024, 11, 919. [Google Scholar] [CrossRef]
- Stremoukhov, O.; Koshovyi, O.M.; Gontova, T.; Komisarenko, M.A.; Borodina, N.V. Elemental composition, morphological and anatomical features of blueberry leaves. Fitoterapia 2020, 1, 50–57. [Google Scholar] [CrossRef]
- Khan, R.; Ma, X.; Hussain, Q.; Chen, K.; Farooq, S.; Asim, M.; Ren, X.; Shah, S.; Shi, Y. Transcriptome and anatomical studies reveal alterations in leaf thickness under long-term drought stress in tobacco. J. Plant Physiol. 2023, 281, 153920. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Nan, L.; Wang, K.; Xia, J.; Ma, B.; Cheng, J. Integrative leaf anatomy structure, physiology, and metabolome analyses revealed the response to drought stress in sainfoin at the seedling stage. Phytochem. Anal. PCA 2024, 35, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Li, Z.; Song, C.; Song, S.; Jiao, J.; Liu, Y.; Dong, Z.; Zheng, X. Contrasting drought tolerance in two apple cultivars associated with difference in leaf morphology and anatomy. Am. J. Plant Sci. 2019, 10, 709–722. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, X.; Liu, W.; Liang, G.; Zhang, Y. Germplasm resources and drought resistance evaluation of Siberian wildrye (Elymus sibiricus L.) in the Tibetan Plateau. Braz. J. Bot. 2023, 46, 743–756. [Google Scholar] [CrossRef]
- Xie, T.W.; Ou, Y.M.S. Anatomy of the leaves and freezing hardiness of thirteen species of Magnoliaceae. Plant Sci. 1989, 7, 234–238. [Google Scholar]
- Li, B.; Zhang, Y.; Kang, Y.; Wang, Y.; Liu, R.; Liu, Q.; Dong, S. Physiological response to low-temperature stress and cold resistance evaluation of Ziziphus jujuba var. spinosa clones from different provenances. Forests 2024, 15, 1130. [Google Scholar] [CrossRef]
- Huan, L.; Li, G.; Ming, J.; Jin, X.; Li, L.; Hao, B. Evaluation of cold resistance and semi-lethal low temperature (LT50)of nine pear cultivars. Asian J. Agric. Res. 2024, 16, 45–47. [Google Scholar]
- Chen, H.H.; Li, P.H. Interactions of low temperature, water stress, and short days in the induction of stem frost hardiness in red osier dogwood. Plant Physiol. 1978, 62, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Zhang, Y.L.; Shao, H.; Liu, J. Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J. Agron. Crop. Sci. 2010, 196, 212–219. [Google Scholar] [CrossRef]
- Rui, L. Examination of Anatomical structure of cocos nucifera L. leaf from different varieties. Southwest China J. Agric. Sci. 2011, 24, 1425–1429. [Google Scholar]
- Yin, X.; Putten, P.; Belay, D.; Struik, P.C. Using photorespiratory oxygen response to analyse leaf mesophyll resistance. Photosyn. Res. 2020, 144, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Galmés, J.; Ochogavía, J.M.; Gago, J.; Roldán, E.J.; Cifre, J.; Conesa, M.À. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ. 2013, 36, 920–935. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.R.; Wang, W.L.; Zheng, C.S.; Fu, J.; Liu, H.W. Evaluation of cold resistance of four wild Carex speices. Chin. J. App. Ecol. 2017, 28, 89–95. [Google Scholar]
- Jie, Z.; Wei, H.; Li, Y.X.; He, J.Q.; Zhu, H.H.; Zhou, Z.G. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). J. Integr. Agric. 2020, 19, 495–508. [Google Scholar]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Andres, R.M.; Cao-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Gibadulina, I.I.; Larionov, M.V.; Maslennikova, N.N. Anatomical and morphological features of the leaves of Tilia Cordata Mill. As an Indicator of the Adaptive Capabilities of the species to the conditions of the urban environment. IOP Conf. Ser. Earth Environ. Sci. 2024, 998, 032082. [Google Scholar] [CrossRef]
- Rubiales, D.; Khazaei, H. Advances in disease and pest resistance in faba bean. Theor. Appl. Genet. 2022, 135, 3735–3756. [Google Scholar] [CrossRef] [PubMed]
- Shad, M.; Yasmeen, A.; Azam, S.; Bakhsh, A.; Latif, A.; Shahid, N.; Salah, U.D.; Sadaqat, S.; Rao, A.Q.; Shahid, A.A. Enhancing the resilience of transgenic cotton for insect resistance. Mol. Biol. Rep. 2021, 49, 5315–5323. [Google Scholar] [CrossRef] [PubMed]
- Ferry, N.; Edwards, M.G.; Gatehouse, J.A.; Gatehouse, A.M. Plant–insect interactions: Molecular approaches to insect resistance. Curr. Opin. Biotech. 2004, 15, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Daud, R.D.; Elenicede, C.C.; Reinaldo, J.F.F. Changes in leaf physiology caused by Calacarus heveae (Acari, Eriophyidae) on rubber tree. Exp. Appl. Acarol. 2012, 57, 127–137. [Google Scholar] [CrossRef]
- Radmila, P.; Kielkiewicz, M. Plant-eriophyoid mite interactions: Specific and unspecific morphological alterations. Part II. Exp. Appl. Acarol. 2010, 51, 81–91. [Google Scholar]
- Wilson, L.J. Resistance of Okra-Leaf cotton genotypes to twospotted spider mites (Acari: Tetranychidae). J. Econ. Entomol. 1994, 87, 1726–1735. [Google Scholar] [CrossRef]
- Macedo, T.B.; Peterson, R.K.D.; Weaver, D.K. Photosynthetic responses of wheat, Triticum aestivum L. plants to simulated insect defoliation during vegetative growth and at grain fill. Environ. Entomol. 2006, 35, 1702–1709. [Google Scholar] [CrossRef]
- Juan, W.; Lin, L.; Xiang, X.; Yizhong, Y.; Wang, A. Physiological variation of damaged leaves of tomato by Aculops lycopersici. Acta Hortic. Sin. 2006, 6, 1215–1218. [Google Scholar]
Abbreviation | Cultivar (Line) | Abbreviation | Cultivar (Line) |
---|---|---|---|
NC1 | L. barbarum ‘Ningqicai 1’ | He3 | L. barbarum ‘He 3’ |
NC3 | L. barbarum ‘Ningqicai 3’ | 7-8 | L. barbarum ‘7-8’ |
NC4 | L. barbarum ‘Ningqicai 4’ | 2-182 | L. barbarum ‘2-182’ |
NC5 | L. barbarum ‘Ningqicai 5’ | 2-184 | L. barbarum ‘2-184’ |
NC6 | L. barbarum ‘Ningqicai 6’ | LR | L. ruthenicum Murr. |
NC7 | L. barbarum ‘Ningqicai 7’ | LC | L. Chinense Mill |
NC8 | L. barbarum ‘Ningqicai 8’ | LCy | L. cylindricum Kuang |
NC9 | L. barbarum ‘Ningqicai 9’ | LY | L. yunnanense Kuang |
NC10 | L. barbarum ‘Ningqicai 10’ | Guangdong | L. chinense ‘Guangdong’ |
1818 | L. barbarum ‘1818’ | Amercicanum | L. americanum Jacp |
1821 | L. barbarum ‘1821’ | LezhiB | L. dasystemum Pojark ‘LezhiB’ |
1825 | L. barbarum ‘1825’ | Lezhi | L. dasystemum ‘Lezhi’ |
N1 | L. barbarum ‘Ningqi 1’ | 14-01 | L. barbarum ‘14-01’ |
N5 | L. barbarum ‘Ningqi 5’ | 1-173 | L. barbarum ‘1-173’ |
N7 | L. barbarum ‘Ningqi 7’ | 1-368 | L. barbarum ‘1-368’ |
N10 | L. barbarum ‘Ningqi 10’ | Tianjing 3 | L. barbarum ‘Tianjing 3’ |
Z99 | L. barbarum ‘Z99’ | 4-1 | L. barbarum ‘4-1’ |
Z77 | L. barbarum ‘Z77’ | 6082 | L. barbarum ‘6082’ |
Cultivar (Line) | Insect Resistance Score | Order | Drought Resistance Score | Order | Cold Resistance Score | Order | Total Resistance Score | Order |
---|---|---|---|---|---|---|---|---|
NC1 | 0.35 | 15 | 0.37 | 11 | 0.34 | 13 | 0.35 | 13 |
NC3 | 0.19 | 28 | 0.22 | 23 | 0.21 | 24 | 0.21 | 24 |
NC4 | 0.3 | 20 | 0.26 | 19 | 0.28 | 18 | 0.28 | 18 |
NC5 | 0.12 | 33 | 0.16 | 27 | 0.12 | 28 | 0.13 | 28 |
NC6 | 0.19 | 28 | 0.19 | 24 | 0.18 | 25 | 0.19 | 25 |
NC7 | 0.17 | 30 | 0.17 | 26 | 0.15 | 27 | 0.16 | 27 |
NC8 | 0.28 | 21 | 0.27 | 18 | 0.27 | 19 | 0.27 | 19 |
NC9 | 0.3 | 20 | 0.32 | 14 | 0.29 | 17 | 0.3 | 17 |
NC10 | 0.18 | 29 | 0.17 | 26 | 0.17 | 26 | 0.17 | 26 |
1818 | 0.31 | 18 | 0.29 | 17 | 0.31 | 15 | 0.3 | 17 |
1821 | 0.42 | 9 | 0.4 | 8 | 0.41 | 8 | 0.41 | 8 |
1825 | 0.24 | 24 | 0.24 | 21 | 0.23 | 22 | 0.24 | 21 |
N1 | 0.26 | 23 | 0.29 | 17 | 0.25 | 21 | 0.27 | 19 |
N5 | 0.61 | 3 | 0.5 | 3 | 0.64 | 2 | 0.58 | 3 |
N7 | 0.5 | 5 | 0.49 | 4 | 0.49 | 5 | 0.49 | 5 |
N10 | 0.37 | 13 | 0.36 | 12 | 0.35 | 12 | 0.36 | 12 |
Z99 | 0.21 | 26 | 0.25 | 20 | 0.21 | 24 | 0.22 | 23 |
Z77 | 0.31 | 19 | 0.3 | 16 | 0.3 | 16 | 0.3 | 17 |
HE3 | 0.43 | 8 | 0.37 | 10 | 0.41 | 8 | 0.4 | 9 |
7-8 | 0.36 | 14 | 0.31 | 15 | 0.36 | 11 | 0.34 | 14 |
2-182 | 0.41 | 10 | 0.34 | 13 | 0.4 | 9 | 0.38 | 11 |
2-184 | 0.33 | 17 | 0.29 | 17 | 0.31 | 15 | 0.31 | 16 |
LR | 0.69 | 2 | 0.72 | 1 | 0.68 | 1 | 0.7 | 1 |
LC | 0.46 | 7 | 0.38 | 9 | 0.45 | 7 | 0.43 | 7 |
LCy | 0.72 | 1 | 0.57 | 2 | 0.57 | 3 | 0.62 | 2 |
LY | 0.3 | 20 | 0.22 | 23 | 0.32 | 14 | 0.28 | 18 |
Guangdong | 0.16 | 32 | 0.17 | 26 | 0.15 | 27 | 0.16 | 27 |
Americanum | 0.27 | 22 | 0.25 | 20 | 0.26 | 20 | 0.26 | 20 |
LezhiB | 0.38 | 12 | 0.42 | 7 | 0.38 | 10 | 0.39 | 10 |
Lezhi | 0.49 | 6 | 0.48 | 5 | 0.47 | 6 | 0.48 | 6 |
14-01 | 0.51 | 4 | 0.47 | 6 | 0.5 | 4 | 0.5 | 4 |
1-173 | 0.2 | 27 | 0.18 | 25 | 0.18 | 25 | 0.19 | 25 |
1-368 | 0.23 | 25 | 0.23 | 22 | 0.22 | 23 | 0.23 | 22 |
Tianjing 3 | 0.39 | 11 | 0.36 | 12 | 0.38 | 10 | 0.38 | 11 |
4-1 | 0.34 | 16 | 0.34 | 13 | 0.32 | 14 | 0.33 | 15 |
6082 | 0.16 | 31 | 0.16 | 28 | 0.17 | 26 | 0.16 | 27 |
Principal Component | Eigen Value | Contribution/% | Cumulative Contribution/% | |
---|---|---|---|---|
Insect resistance | Ⅰ | 3.58 | 59.71 | 59.71 |
Ⅱ | 1.36 | 22.74 | 82.44 | |
Drought resistance | Ⅰ | 3.22 | 53.73 | 53.73 |
Ⅱ | 1.45 | 24.18 | 77.91 | |
Cold resistance | Ⅰ | 3.23 | 53.77 | 53.77 |
Ⅱ | 1.41 | 23.42 | 77.18 |
Insect resistance | Principal component | TU | TP | TS | TLC | LT | P/L |
Ⅰ | 0.81 | 0.82 | 0.93 | 0.68 | 0.97 | −0.03 | |
Ⅱ | −0.13 | 0.55 | −0.19 | −0.22 | 0.00 | 0.98 | |
Drought resistance | Principal component | TU | TP | LT | TUC | TLC | P/L |
Ⅰ | 0.81 | 0.76 | 0.89 | 0.75 | 0.79 | −0.01 | |
Ⅱ | −0.06 | 0.62 | 0.11 | −0.38 | −0.29 | 0.91 | |
Cold resistance | Principal component | TU | TP | LT | P/S | TUC | TLC |
Ⅰ | 0.81 | 0.75 | 0.89 | −0.06 | 0.75 | 0.80 | |
Ⅱ | −0.01 | 0.61 | 0.12 | 0.90 | −0.38 | −0.27 |
Cultivar (Line) | Score | Order | Cultivar (Line) | Score | Order |
---|---|---|---|---|---|
LR | 275.34 | 1 | LY | 34.66 | 19 |
N7 | 158.51 | 2 | 6082 | 33.29 | 20 |
LCy | 142.56 | 3 | 2-184 | 27.45 | 21 |
N5 | 132.30 | 4 | 1818 | 26.35 | 22 |
LezhiB | 131.12 | 5 | NC9 | 25.19 | 23 |
14-01 | 122.01 | 6 | 1825 | 23.87 | 24 |
Lezhi | 118.64 | 7 | NC8 | 9.71 | 25 |
1821 | 92.95 | 8 | NC4 | 6.99 | 26 |
Tianjing 3 | 71.12 | 9 | Americanum | 5.19 | 27 |
N10 | 70.21 | 10 | N1 | 2.09 | 28 |
NC1 | 55.89 | 11 | NC6 | −0.52 | 29 |
LC | 54.75 | 12 | 1-368 | −1.45 | 30 |
7-8 | 54.28 | 13 | NC5 | −8.56 | 31 |
2-182 | 52.78 | 14 | 1-173 | −10.86 | 32 |
NC3 | 50.12 | 15 | NC10 | −12.34 | 33 |
He3 | 45.73 | 16 | Z99 | −12.99 | 34 |
4-1 | 44.69 | 17 | Guangdong | −25.69 | 35 |
Z77 | 41.00 | 18 | NC7 | −36.39 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Dai, G.; Qin, K.; Wu, J.; Wang, Z.; Wang, C. Comprehensive Evaluation of Germplasm Resources in Various Goji Cultivars Based on Leaf Anatomical Traits. Forests 2025, 16, 187. https://doi.org/10.3390/f16010187
Yang Z, Dai G, Qin K, Wu J, Wang Z, Wang C. Comprehensive Evaluation of Germplasm Resources in Various Goji Cultivars Based on Leaf Anatomical Traits. Forests. 2025; 16(1):187. https://doi.org/10.3390/f16010187
Chicago/Turabian StyleYang, Zijun, Guoli Dai, Ken Qin, Jiali Wu, Zhonghua Wang, and Cuiping Wang. 2025. "Comprehensive Evaluation of Germplasm Resources in Various Goji Cultivars Based on Leaf Anatomical Traits" Forests 16, no. 1: 187. https://doi.org/10.3390/f16010187
APA StyleYang, Z., Dai, G., Qin, K., Wu, J., Wang, Z., & Wang, C. (2025). Comprehensive Evaluation of Germplasm Resources in Various Goji Cultivars Based on Leaf Anatomical Traits. Forests, 16(1), 187. https://doi.org/10.3390/f16010187