Remote Sensing Detection of Forest Changes in the South Ridge Corridor and an Attribution Analysis
Abstract
:1. Introduction
- (1)
- Data acquisition and image screening: Landsat de-clouded remote sensing image data from 2001 to 2020 were retrieved through the remote sensing data cloud platform GEE, and images with changes between years were screened to determine the vegetation changes in the Nanling Corridor.
- (2)
- Disturbance changes assessment and accuracy validation: The disturbance and recovery trend detection (LandTrendr) method and random forest algorithm were utilized to assess the long time-series disturbance changes in vegetation in the Nanling Corridor region, and the classification accuracy and kappa coefficient were validated by visually selecting sample points.
- (3)
- Trend analysis and management recommendations: This study aimed to analyze the trend of vegetation change and the causes of disturbance in the Nanling Corridor, explore the impacts of human activities and natural factors on the vegetation, and provide data support and scientific basis for the formulation of future forest management measures in the Nanling area.
2. Study Area and Data Sources
2.1. Study Area
2.2. Research Data
2.3. Other Auxiliary Datasets
3. Methods
3.1. The LandTrendr Algorithm
3.2. The Random Forest Algorithm
4. Results
4.1. Distribution of Spatial and Temporal Patterns of Forest Disturbance in the South Ridge Corridor
4.1.1. Spatial Distribution Patterns of Forest Disturbance in the South Ridge Corridor
4.1.2. Temporal Distribution Patterns of Forest Disturbance in the South Ridge Corridor
4.2. Analysis of Drivers of Spatial and Temporal Patterns of Forest Disturbance in the South Ridge Corridor
4.2.1. Evaluation Results of Forest Disturbance Attribution Accuracy
4.2.2. Forest Disturbance Attribution Analysis
5. Discussion
5.1. Forest Disturbance Monitoring
5.2. Forest Disturbance Driving Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marques, Q.E.; Silvério, V.D.; Galvão, S.L.; Aragão, L.E.O.C.; Uribe, M.R.; Macedo, M.N.; Rattis, L.; Alencar, A.A.C.; Brando, P.M. Assessing the effectiveness of vegetation indices in detecting forest disturbances in the southeast Amazon. Sci. Rep. 2024, 14, 27287. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ota, T.; Mizoue, N. Attribution of forest disturbance types based on the Dynamic World class probability data: A case study of Myanmar. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104216. [Google Scholar] [CrossRef]
- Yun, F.J.; Di, G.Z.; Feng, H.H.; Tomomichi, K.; Hiroyuki, M.; Han, S.Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Change Biol. 2014, 20, 2019–2030. [Google Scholar]
- Mori, S.A.; Lertzman, P.K.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A.; Altman, J.; Vozmishcheva, A.S.; Krestov, P.V. Extending deep learning approaches for forest disturbance segmentation on very high—Resolution satellite images. Remote Sens. Ecol. Conserv. 2021, 7, 355–368. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Wang, X.; Yang, X.; Zhang, X.; Fang, Q.; Zhou, L.; Yu, X. Evaluating the ecological conservation effectiveness and strategies in Nanling key ecological function zone of China: A CHANS perspective. Ecol. Front. 2024, 44, 1140–1148. [Google Scholar] [CrossRef]
- Chao, D.; Wen, H.; Yuan, M.; Yao, Z. Satellite-Observed Spatio-Temporal Variation in Spring Leaf Phenology of Subtropical Forests across the Nanling Mountains in Southern China over 1999–2019. Forests 2022, 13, 1486. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Y.; Lei, Y.; Xue, W.; Yan, G.; Liu, X.; Cai, B.; Tong, D.; Wang, J. Air Quality Benefits of Achieving Carbon Neutrality in China. Sci. Total Environ. 2021, 795, 148784. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Z.; Wang, W.; Xu, W.; Lv, Q.; Li, K.; Guo, W.; Fang, L.; Zhang, Q.; Wu, Z.; et al. Disturbance types play a key role in post-disturbance vegetation recovery in boreal forests of Northeast China. Ecol. Indic. 2024, 168, 112745. [Google Scholar] [CrossRef]
- Schiller, C.; Költzow, J.; Schwarz, S.; Schiefer, F.; Fassnacht, F.E. Forest disturbance detection in Central Europe using transformers and Sentinel-2 time series. Remote Sens. Environ. 2024, 315, 114475. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.P. Determination of deforestation rates of the world’s humid tropical forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef]
- Runge, A.; Nitze, I.; Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- Masek, J.G.; Goward, S.N.; Kennedy, R.E.; Cohen, W.B.; Moisen, G.G.; Schleeweis, K.; Huang, C. United States Forest Disturbance Trends Observed Using Landsat Time Series. Ecosystems 2013, 16, 1087–1104. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. 2019, 238, 111116. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Zhu, Z.; Gorelick, N. Diversity of Algorithm and Spectral Band Inputs Improves Landsat Monitoring of Forest Disturbance. Remote Sens. 2020, 12, 1673. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Gray, A.N.; Gregory, M.J. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region, USA. For. Ecol. Manag. 2015, 339, 71–86. [Google Scholar] [CrossRef]
- Su, Y.; John, R.; Zhe, Z.; Ronald, E.J. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sens. Environ. 2021, 252, 112167. [Google Scholar]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Guo, S.; Zhang, X.; Pan, X.; Fang, H.; Chen, R.; Du, P. Assessment of forest disturbance and soil erosion in wind farm project using satellite observations. Resour. Conserv. Recycl. 2025, 212, 107934. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Goward, S.N.; Masek, J.G.; Cohen, W.; Moisen, G.; Collatz, G.J.; Healey, S.; Houghton, R.A.; Huang, C.; Kennedy, R.; Law, B.; et al. Forest Disturbance and North American Carbon Flux. Eos Trans. Am. Geophys. Union 2008, 89, 105–106. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Deforestation in Heilongjiang Province of China, 1896–2000: Severity, spatiotemporal patterns and causes. Appl. Geogr. 2012, 35, 345–352. [Google Scholar] [CrossRef]
- Rubleva, E.M.; Vozmishcheva, S.A.; Bondarchuk, N.S. Climatic and disturbances influence on tree-rings of Larix gmelinii in the southeast coastal area. Dendrochronologia 2024, 88, 126264. [Google Scholar] [CrossRef]
- Mackey, B.; Hugh, S.; Norman, P.; Rogers, B.M.; Dellasala, D. Insights into Boreal Forest Disturbance from Canopy Stability Index. Land 2024, 13, 1644. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Zhang, X.; Lei, L.; Chai, G.; Yao, Z.; Qiu, S.; Du, J.; Wang, J.; Wang, Z.; et al. Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data. Remote Sens. 2024, 16, 3238. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Huang, J.G.; Li, R.; Liang, H.; Duan, J.; Cao, J.; Yang, F.; Zhang, Y.; Hartl, C.; et al. An improved assessment of forest disturbance using a novel approach of combining a Gaussian mixture model with an EM algorithm. Ecol. Indic. 2024, 166, 112564. [Google Scholar] [CrossRef]
- He, L.; Hong, L.; Zhu, X.A. An Improved LandTrendr Algorithm for Forest Disturbance Detection Using Optimized Temporal Trajectories of the Spectrum: A Case Study in Yunnan Province, China. Forests 2024, 15, 1539. [Google Scholar] [CrossRef]
- Venable, K.; Johnston, M.J.; LeDuc, D.S.; Prieto, L. Model linkage to assess forest disturbance impacts on water quality: A wildfire case study using LANDIS(II)-VELMA. Environ. Model. Softw. 2024, 180, 106134. [Google Scholar] [CrossRef] [PubMed]
- Altman, J.; Fibich, P.; Trotsiuk, V.; Altmanova, N. Global pattern of forest disturbances and its shift under climate change. Sci. Total Environ. 2024, 915, 170117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, L.; Liu, X.; Liu, M.; Chen, C.; Yang, B.; Xu, Y.; Zhang, S. Detection of Forest Disturbances with Different Intensities Using Landsat Time Series Based on Adaptive Exponentially Weighted Moving Average Charts. Forests 2023, 15, 19. [Google Scholar] [CrossRef]
- Kewei, L.; Erqi, X. Differentiating effects of salvage logging and recovery patterns on post-fire boreal forests in Northeast China using a modified forest disturbance index. GISci. Remote Sens. 2023, 60, 2188674. [Google Scholar]
- Chen, S.; Woodcock, C.; Luofan, D.; Tarrio, K.; Mohammadi, D.; Olofsson, P. Review of drivers of forest degradation and deforestation in Southeast Asia. Remote Sens. Appl. Soc. Environ. 2024, 33, 101129. [Google Scholar] [CrossRef]
- Mirioba, J.N.; Emitaro, W.; Obwanga, B.; Gaya, H.; Leley, N.; Otuoma, J.; Maina, J.M.; Kawaka, F. Orchid species diversity across a forest disturbance gradient in west Mau forest, Kenya. PLoS ONE 2024, 19, e0307887. [Google Scholar] [CrossRef]
- Bart, S.; Johannes, R.; Diego, M.; Adugna, M.; Etse, L.; Marielos, P.-C.; Martin, H. Monitoring direct drivers of small-scale tropical forest disturbance in near real-time with Sentinel-1 and -2 data. Remote Sens. Environ. 2023, 295, 113655. [Google Scholar]
- Ying, Z.; Shu, L.; Ying, W.; Hai, G.; Yan, J.; Dan, W. Forest management practices and policies exert strong impacts on the spatio-temporal variations of forest disturbance in Hunan Province, China over the last three decades. For. Ecol. Manag. 2023, 544, 121167. [Google Scholar]
- Li, H.; Speer, J.H.; Thapa, I. Quantitative analysis of multiple forest disturbances and their compound influences on tree growth in the western US. Dendrochronologia 2023, 79, 126084. [Google Scholar] [CrossRef]
- Kennedy, E.R.; Yang, Z.; Cohen, B.W. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Lin, B.; Liu, L.; Xi, J.; Zhang, L.; Zhou, Y.; Wang, L.; Wang, S.; Yin, H. Spatial–Temporal Characteristics and Driving Factors of Visible and Invisible Non-Grain Production of Cultivated Land in Hebei Province Based on GlobeLand 30 and MODIS-EVI. Land 2024, 13, 1775. [Google Scholar] [CrossRef]
- Xiao, T.; Kelsee, B.H.; Kangjoon, C.; Eric, B.L.; Pontus, O.; Curtis, W.E. Near real-time monitoring of tropical forest disturbance by fusion of Landsat, Sentinel-2, and Sentinel-1 data. Remote Sens. Environ. 2023, 294, 113626. [Google Scholar]
- Wei, H.; Zhao, X.; Zhou, T.; Du, L.; Tang, B.; Zhao, W.; Tang, R.; Chen, J. Effects of Drought Disturbance on Forest Biomass in Southwestern China. For. Res. Open Access 2016, 5, 1–7. [Google Scholar]
- Tian, L.; Liao, L.; Tao, Y.; Wu, X.; Li, M. Forest Age Mapping Using Landsat Time-Series Stacks Data Based on Forest Disturbance and Empirical Relationships between Age and Height. Remote Sens. 2023, 15, 2862. [Google Scholar] [CrossRef]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, T.; Ding, M.; Zhang, W.; Zhai, C.; Lu, J.; He, H.; Luo, Y.; Bao, G.; Ren, Z. Changes in Spatiotemporal Pattern and Its Driving Factors of Suburban Forest Defoliating Pest Disasters. Forests 2024, 15, 1650. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, M.; Han, J. Integrated risk governance in the Yungui Plateau, China: The 2008 ice-snow storm disaster. Rev. Geogr. Alp. 2012, 100. [Google Scholar] [CrossRef]
- Ji, C.; Yang, H.; Li, X.; Pei, X.; Li, M.; Yuan, H.; Cao, Y.; Chen, B.; Qu, S.; Zhang, N.; et al. Forest Wildfire Risk Assessment of Anning River Valley in Sichuan Province Based on Driving Factors with Multi-Source Data. Forests 2024, 15, 1523. [Google Scholar] [CrossRef]
- Raphael, A.; Elias, H.; Annechien, H.D.; Marco, P.; Tobias, S.; Anne, T. Resilient forest-based value chains? Econometric analysis of roundwood prices in five European countries in the era of natural disturbances. For. Policy Econ. 2023, 153, 102975. [Google Scholar]
- Maren, S.; Gesa, D.; Christofer, S.; Thilo, H. Early natural tree regeneration after wildfire in a Central European Scots pine forest: Forest management, fire severity and distance matters. For. Ecol. Manag. 2023, 539, 120999. [Google Scholar]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Cai, S.; Liu, D. Detecting Change Dates from Dense Satellite Time Series Using a Sub-Annual Change Detection Algorithm. Remote Sens. 2015, 7, 8705–8727. [Google Scholar] [CrossRef]
- Mao, X.G.; Yao, Y.; Fan, W.Y. Extraction ot forest disturbance parameters and estimation of forest height based on long time-series Landsat. Sci. Silvae Sin. 2019, 55, 79–87. [Google Scholar]
- Katsuto, S.; Wataru, M.; Takahisa, F.; Ronald, C.E. Mapping Land Use/Land Cover Changes and Forest Disturbances in Vietnam Using a Landsat Temporal Segmentation Algorithm. Remote Sens. 2023, 15, 851. [Google Scholar] [CrossRef]
- Coops, N.C.; Shang, C.; Wulder, M.A.; White, J.C.; Hermosilla, T. Change in forest condition: Characterizingnon-stand replacing disturbances using time series satellite imagery. For. Ecol. Manag. 2020, 474, 118370. [Google Scholar] [CrossRef]
- Jia, S.; Guang, C.; Jian, H.; Sha, H.; Jiang, M. Contrasting Forest Loss and Gain Patterns in Subtropical China Detected Using an Integrated LandTrendr and Machine-Learning Method. Remote Sens. 2022, 14, 3238. [Google Scholar] [CrossRef]
- Qin, P.; Carlesson, F.; Xu, J.T. Forest tenure reform in China: A choice experiment on farmers’ property rights preferences. Land Econ. 2011, 87, 473–487. [Google Scholar] [CrossRef]
Factor | Cutdown | Fire | Building or Road | Total |
---|---|---|---|---|
Cutdown | 1743 | 44 | 47 | 1834 |
Fire | 240 | 732 | 36 | 1008 |
Anthropogenic | 198 | 56 | 497 | 751 |
Total | 2181 | 832 | 580 | 3593 |
Year | Overall Accuracy | Kappa Coefficient |
---|---|---|
2001 | 84.83 | 0.71 |
2002 | 84.47 | 0.73 |
2003 | 79.27 | 0.66 |
2004 | 81.82 | 0.69 |
2005 | 86.23 | 0.78 |
2006 | 83.09 | 0.71 |
2007 | 83.05 | 0.71 |
2008 | 82.47 | 0.72 |
2009 | 76.19 | 0.61 |
2010 | 80.11 | 0.64 |
2011 | 79.33 | 0.62 |
2012 | 84.5 | 0.68 |
2013 | 87.78 | 0.73 |
2014 | 88.44 | 0.80 |
2015 | 83.58 | 0.72 |
2016 | 84.11 | 0.75 |
2017 | 81.54 | 0.68 |
2018 | 81.05 | 0.67 |
2019 | 81.66 | 0.66 |
2020 | 75.98 | 0.63 |
Average | 82.48 | 0.70 |
Years | Area | Percentage | |||||
---|---|---|---|---|---|---|---|
Cutdown | Fire | Building or Road | Total | Cutdown | Fire | Building or Road | |
2001 | 952.51 | 262.65 | 188.69 | 1403.85 | 67.85 | 18.71 | 13.44 |
2002 | 22.52 | 8.56 | 6.63 | 37.71 | 59.72 | 22.70 | 17.58 |
2003 | 188.57 | 55.68 | 62.72 | 306.97 | 61.43 | 18.14 | 20.43 |
2004 | 212.89 | 116.03 | 41.71 | 370.63 | 57.44 | 31.31 | 11.25 |
2005 | 111.05 | 83.20 | 29.83 | 224.08 | 49.56 | 37.13 | 13.31 |
2006 | 288.49 | 96.89 | 54.14 | 439.52 | 65.64 | 22.04 | 12.32 |
2007 | 280.88 | 113.55 | 43.38 | 437.81 | 64.16 | 25.94 | 9.91 |
2008 | 579.44 | 869.51 | 104.40 | 1553.35 | 37.30 | 55.98 | 6.72 |
2009 | 275.56 | 147.64 | 58.40 | 481.06 | 57.22 | 30.66 | 12.13 |
2010 | 307.57 | 130.72 | 66.42 | 504.71 | 60.94 | 25.90 | 13.16 |
2011 | 264.80 | 150.71 | 57.16 | 472.67 | 56.02 | 31.88 | 12.09 |
2012 | 345.01 | 103.11 | 31.84 | 479.96 | 71.88 | 21.48 | 6.63 |
2013 | 436.01 | 171.45 | 89.26 | 696.72 | 62.58 | 24.61 | 12.81 |
2014 | 457.58 | 246.05 | 68.94 | 772.57 | 59.23 | 31.85 | 8.92 |
2015 | 428.68 | 204.92 | 167.63 | 801.23 | 53.50 | 25.58 | 20.92 |
2016 | 438.44 | 265.33 | 152.62 | 856.39 | 51.20 | 30.98 | 17.82 |
2017 | 541.54 | 172.65 | 97.73 | 811.92 | 66.70 | 21.26 | 12.04 |
2018 | 395.30 | 103.96 | 47.79 | 547.05 | 72.26 | 19.00 | 8.74 |
2019 | 206.24 | 38.62 | 68.35 | 313.21 | 65.85 | 12.33 | 21.82 |
2020 | 225.51 | 74.39 | 92.47 | 392.37 | 57.47 | 18.96 | 23.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Huang, L.; Zhang, M.; Dou, Y.; Mo, K.; Liu, J. Remote Sensing Detection of Forest Changes in the South Ridge Corridor and an Attribution Analysis. Forests 2025, 16, 205. https://doi.org/10.3390/f16020205
Wu N, Huang L, Zhang M, Dou Y, Mo K, Liu J. Remote Sensing Detection of Forest Changes in the South Ridge Corridor and an Attribution Analysis. Forests. 2025; 16(2):205. https://doi.org/10.3390/f16020205
Chicago/Turabian StyleWu, Nan, Linghui Huang, Meng Zhang, Yaqing Dou, Kehan Mo, and Junang Liu. 2025. "Remote Sensing Detection of Forest Changes in the South Ridge Corridor and an Attribution Analysis" Forests 16, no. 2: 205. https://doi.org/10.3390/f16020205
APA StyleWu, N., Huang, L., Zhang, M., Dou, Y., Mo, K., & Liu, J. (2025). Remote Sensing Detection of Forest Changes in the South Ridge Corridor and an Attribution Analysis. Forests, 16(2), 205. https://doi.org/10.3390/f16020205