Isotopic Signal Supports Physiological Integration in Root Suckers of Two Tree Species Differing in Shade Tolerance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Recruitment Type and Light Environment
2.3. Sampling for Natural C and N Stable Isotope Abundances
2.4. 13CO2 Isotope Labeling
2.5. Elemental and Isotopic Analyses
2.6. Data Analysis
3. Results
3.1. Light Availability
3.2. Differences Between Recruit Types and Species in Leaf Elemental Concentration
3.3. Differences Between Recruit Types and Species in Natural Abundance Isotope Composition
3.4. Carbon Transfer Between Interconnected Root Suckers of Embothrium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klimešová, J.; Martínková, J.; Pausas, J.G.; de Moraes, M.G.; Herben, T.; Yu, F.-H.; Puntieri, J.; Vesk, P.A.; de Bello, F.; Janeček, Š.; et al. Handbook of standardized protocols for collecting plant modularity traits. Perspect. Plant Ecol. Evol. Syst. 2019, 40, 125485. [Google Scholar] [CrossRef]
- Peterson, C.; Jones, R. Clonality in woody plants: A review and comparison with clonal herbs. In The Ecology and Evolution of Clonal Plants; de Kroon, H., van Groenendael, J., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1997; pp. 263–289. [Google Scholar]
- González, M.E.; Veblen, T.T.; Donoso, C.; Valeria, L. Tree regeneration responses in a lowland Nothofagus-dominated forest after bamboo dieback in South-Central Chile. Plant Ecol. 2002, 161, 59–73. [Google Scholar] [CrossRef]
- Beaudet, M.; Brisson, J.; Gravel, D.; Messier, C. Effect of a major canopy disturbance on the coexistence of Acer saccharum and Fagus grandifolia in the understorey of an old-growth forest. J. Ecol. 2007, 95, 458–467. [Google Scholar] [CrossRef]
- Beaudet, M.; Messier, C. Beech regeneration of seed and root sucker origin: A comparison of morphology, growth, survival, and response to defoliation. For. Ecol. Manag. 2008, 255, 3659–3666. [Google Scholar] [CrossRef]
- Muñoz, A.A.; González, M.E. Patrones de regeneraciones arbórea en claros a una década de la floración y muerte masiva de Chusquea quila (Poaceae) en un remanente de bosque antiguo del valle central en el centro-sur de Chile. Rev. Chil. Hist. Nat. 2009, 82, 185–198. [Google Scholar] [CrossRef]
- Koop, H. Vegetative reproduction of trees in some European natural forest. Vegetatio 1987, 72, 103–110. [Google Scholar] [CrossRef]
- Pennings, S.C.; Callaway, R.M. The advantages of clonal integration under different ecological conditions: A community-wide test. Ecology 2000, 81, 709–716. [Google Scholar] [CrossRef]
- Wiehle, M.; Eusemann, P.; Thevs, N.; Schnittler, M. Root suckering patterns in Populus euphratica (Euphrates poplar, Salicacea). Trees 2009, 23, 991–1001. [Google Scholar] [CrossRef]
- Escandón, A.B.; Paula, S.; Rojas, R.; Corcuera, L.J.; Coopman, R.E. Sprouting extends the regeneration niche in temperate rain forest: The case of the long-lived tree Eucryphia cordifolia. For. Ecol. Manag. 2013, 310, 321–326. [Google Scholar] [CrossRef]
- Marshall, C. Source-sink relations of interconnected ramets. In Clonal Growth in Plants: Regulation and Function; van Groenendael, J., de Kroon, H., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1990; pp. 23–41. [Google Scholar]
- Liu, F.; Liu, J.; Dong, M. Ecological consequences of clonal integration in plants. Front. Plant Sci. 2016, 7, 186090. [Google Scholar] [CrossRef] [PubMed]
- Magda, D.; Warembourg, F.R.; Labeyrie, V. Physiological integration among ramets of Lathyrus sylvestris L. Translocation of assimilates. Oecologia 1988, 77, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Alpert, P. Water sharing among ramets in a desert population of Distichlis spicata (Poaceae). Am. J. Bot. 1990, 77, 1648–1651. [Google Scholar] [CrossRef]
- Saitoh, T.; Seiwa, K.; Nishiwaki, A. Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata: An isotopic (15N) assessment. Ann. Bot. 2006, 98, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Adonsou, K.E.; DesRochers, A.; Tremblay, F. Physiological integration of connected balsam poplar ramets. Tree Phys. 2016, 36, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Escandón, A.B.; Paula, S.; Saldaña, A. Root suckering promotes recruitment in two temperate rainforest trees with contrasting shade tolerance. Perspect. Plant Ecol. Evol. Syst. 2020, 44, 125531. [Google Scholar] [CrossRef]
- Lusk, C.H. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 2002, 132, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Lusk, C.H.; Del Pozo, A. Survival and growth of seedlings of 12 chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Austral Ecol. 2002, 27, 173–182. [Google Scholar] [CrossRef]
- Escobar, E.; Donoso, C.; Souto, C.; Alberdi, M.; Zuñiga, A. Embothrium coccineum J.R. et G. Foster. In Las Especies Arbóreas de los Bosques Templados de Chile y Argentina: Autoecología, 1st ed.; Donoso, C., Ed.; Marisa Cúneo Ediciones: Santiago, Chile, 2006; pp. 233–245. [Google Scholar]
- Escandón, A.B.; Rojas, R.; Morales, L.V.; Corcuera, L.J.; Coopman, R.E.; Paula, S. Physiological differences between roots suckers and saplings enlarge the regeneration niche in Eucryphia cordifolia Cav. Tree Phys. 2018, 38, 129–138. [Google Scholar] [CrossRef]
- Ruehr, N.K.; Offermann, C.A.; Gessler, A.; Winkler, J.B.; Ferrio, J.P.; Buchmann, N.; Barnard, R. Drought effects on allocation of recent carbon: From beech leaves to soil CO2 efflux. New Phytol. 2009, 184, 950–961. [Google Scholar] [CrossRef]
- Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S.G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review. Biogeosciences 2011, 8, 3619–3695. [Google Scholar] [CrossRef]
- Epron, D.; Bahn, M.; Derrien, D.; Lattanzi, F.A.; Pumpanen, J.; Gessler, A.; Högberg, P.; Maillard, P.; Dannoura, M.; Gérant, D.; et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Phys. 2012, 32, 776–798. [Google Scholar] [CrossRef]
- Alpert, P.; Mooney, H.A. Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 1986, 70, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Jónsdóttir, I.; Callaghan, T.V. Interrelationships between different generations of interconnected tillers of Carex bigelowii. Oikos 1988, 52, 120–128. [Google Scholar] [CrossRef]
- Jónsdóttir, I.; Callaghan, T.V. Intraclonal translocation of ammonium and nitrite nitrogen in Carex bigelowii Torr. ex Schwein. using 15N and nitrate reductase assays. New Phytol. 1990, 114, 419–428. [Google Scholar] [CrossRef]
- Alpert, P. Nutrient sharing in natural clonal fragments of Fragaria chiloensis. J. Ecol. 1996, 84, 395–406. [Google Scholar] [CrossRef]
- Derner, J.D.; Briske, D.D. An isotopic (15N) assessment of intraclonal regulation in C4 perennial grasses: Ramet interdependence, independence or both? J. Ecol. 1998, 86, 305–314. [Google Scholar] [CrossRef]
- D’Hertefeldt, T.; Jónsdóttir, I. Extensive clonal integration in intact clonal system of Carex arenaria. J. Ecol. 1999, 87, 258–264. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Schooler, S.S.; Van Klinken, R.D. Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. J. Ecol. 2010, 98, 833–844. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, Y.; Luan, J.; Liu, S. Effects of nitrogen addition on clonal integration between mother and doughter ramets of Moso bamboo: A 13C-CO2 pulse labeling study. J. Plant Ecol. 2022, 15, 756–770. [Google Scholar] [CrossRef]
- Pinno, B.D.; Wilson, S.D. Nitrogen translocation between clonal mother and daughter trees at a grassland–forest boundary. Plant Ecol. 2014, 215, 347–354. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, W.; Zeng, F.; Liu, B. Water but not photosynthates integration exists between mother and daughter ramets of a root-derived clonal shrub. Plant Ecol. 2015, 216, 331–342. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, C.; Dong, M. Clonal integration and its ecological significance in Hedysarum laeve, a rhizomatous shrub in Mu Us Sandland. J. Plant Res. 2002, 115, 113–118. [Google Scholar] [CrossRef]
- Rossmann, A.; Butzenlechner, M.; Schmidt, H.L. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Phys. 1991, 96, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Gleixner, G.; Schmidt, H.L. Carbon isotope effects on the fructose-1,6-biphosphate aldolase reaction, origin for non-statistical C-13 distributions in carbohydrates. J. Biol. Chem. 1997, 272, 5382–5387. [Google Scholar] [CrossRef]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef]
- Tcherkez, G.; Mahé, A.; Hodges, M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 2011, 16, 499–506. [Google Scholar] [CrossRef]
- Gessler, A.; Ferrio, J.P. Postphotosynthetic fractionation in leaves, phloem and stem. In Stable Isotopes in Tree Rings; Siegwolf, R.T.W., Brooks, J.R., Roden, J., Saurer, M., Eds.; Tree Physiology; Springer: Cham, Switerland, 2022; Volume 8, pp. 381–396. [Google Scholar]
- Cernusak, L.A.; Tcherkez, G.; Keitel, C.; Cornwell, W.K.; Santiago, L.S.; Knohl, A.; Barbour, M.M.; Williams, D.G.; Reich, P.B.; Ellsworth, D.S.; et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct. Plant Biol. 2009, 36, 199–213. [Google Scholar] [CrossRef]
- Roiloa, S.R.; Antelo, B.; Retuerto, R. Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Ann. Bot. 2014, 114, 399–411. [Google Scholar] [CrossRef]
- Yoneyama, T.; Omata, T.; Nakata, S.; Yazaki, J. Fractionation of Nitrogen isotopes during the uptake and assimilation of ammonia by plants. Plant Cell Physiol. 1991, 32, 1211–1217. [Google Scholar]
- Evans, R.D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001, 6, 121–126. [Google Scholar] [CrossRef]
- Tcherkez, G.; Hodges, M. How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo) respiration in C3 leaves. J. Exp. Bot. 2008, 59, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Wallsgrove, R.; Turner, J.; Hall, N.; Kendall, A.; Bright, S. Barley mutants lacking chloroplast glutamine synthetase—Biochemical and genetic analysis. Plant Phys. 1987, 83, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.; Bio, A.; Domínguez-Valdivia, M.D.; Aparicio-Tejo, P.P.; Lamsfus, C.; Martins-Louçao, M.A. How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 2006, 223, 1068–1080. [Google Scholar] [CrossRef]
- Yoneyama, T.; Matsumaru, T.; Usui, K.; Engelaar, W.M.H.G. Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant Cell Environ. 2001, 24, 133–139. [Google Scholar] [CrossRef]
- Zhou, L.; Song, M.-H.; Wang, S.-Q.; Fan, J.-W.; Liu, J.-Y.; Zhong, H.-P.; Yu, G.-R.; Gao, L.-P.; Hu, Z.-M.; Chen, B.; et al. Patterns of soil 15N and total N and their relationships with environmental factors on the Qinghai-Tibetan plateau. Pedosphere 2014, 24, 232–242. [Google Scholar] [CrossRef]
- Nel, J.A.; Craine, J.M.; Cramer, M.D. Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C and N. Plant Soil 2018, 423, 257–271. [Google Scholar] [CrossRef]
- Zhang, J.; He, N.; Liu, C.; Xu, L.; Chen, Z.; Li, Y.; Wang, R.; Yu, G.; Sun, W.; Xiao, C.; et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Glob. Change Biol. 2020, 26, 2534–2543. [Google Scholar] [CrossRef] [PubMed]
- Gianoli, E.; Saldaña, A.; Jiménez-Castillo, M.; Valladares, F. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. J. Veg. Sci. 2010, 21, 66–73. [Google Scholar] [CrossRef]
- Valladares, F.; Saldaña, A.; Gianoli, E. Costs versus risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. Austral Ecol. 2012, 37, 35–43. [Google Scholar] [CrossRef]
- Anderson, M.C. Some problems of simple characterization of thelight climate in plant communities. In Light as an Ecological Factor; Bainbridge, R., Evans, G.C., Rackham, O., Eds.; Blackwell Scientific Publications: Oxford, UK, 1966; pp. 77–90. [Google Scholar]
- Ehleringer, J.R. 13C/12C fractionation and its utility in terrestrial plant studies. In Carbon Isotope Techniques; Coleman, D.C., Fry, B., Eds.; Academic Press: Cambridge, MA, USA, 1991; pp. 187–200. [Google Scholar]
- Galmés, G.; Aranjuelo, I.; Medrano, H.; Flexas, J. Variation in Rubisco content and activity under variable climatic factors. Photosynth. Res. 2013, 117, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Schuman, G.; Rauzi, F. Microwave drying of rangeland forage samples. J. Range Manag. 1981, 34, 426–428. [Google Scholar] [CrossRef]
- Popp, M.; Lied, W.; Meyer, A.J.; Richter, A.; Schiller, P.; Schwitte, H. Sample preservation for determination of organic compounds: Microwave versus freeze-drying. J. Exp. Bot. 1996, 47, 1469–1473. [Google Scholar] [CrossRef]
- Boutton, T.W. Stable carbon isotope ratios of natural materials: I. sample preparation and mass spectrometric analysis. In Carbon Isotope Techniques; Coleman, D.C., Fry, B., Eds.; Academic Press: Cambridge, MA, USA, 1991; pp. 155–171. [Google Scholar]
- Teste, F.P.; Simard, S.W.; Durall, D.M.; Guy, R.D.; Jones, M.D.; Schoonmaker, A.L. Access to mycorrhizal networks and roots of trees: Importance for seedling survival and resource transfer. Ecology 2009, 90, 2808–2822. [Google Scholar] [CrossRef] [PubMed]
- Heaton, T.H.E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaecol. Sci. 1999, 26, 637–649. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Evol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Cooper, C.G.; Cooper, M.D.; Richards, M.P.; Schmitt, J. Geographical and seasonal variation in δ13C values of C3 plant Arabidopsis: Archaecological implications. J. Archaecol. Sci. 2023, 149, 105709. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means. 2018. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 5 January 2025).
- Graves, S.; Piepho, H.-P.; Selzer, L. Package “multcompView”: Visualizations of Paired Comparisons. R Package Version 0.1-7. 2015. Available online: https://cran.r-project.org/web/packages/multcompView/index.html (accessed on 5 January 2025).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Method. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evan, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modeling and multi-model inference in ecology. Peer J. 2018, 6, e4794. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2018; 608p. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists, 1st ed.; Cambridge University Press: Cambridge, UK, 2002; 558p. [Google Scholar]
- Boeckx, P.; Paulino, L.; Oyarzún, C.; van Cleemput, O.; Godoy, R. Soil δ15N patterns in old-growth forestsof southern Chile as integrator for N-cycling. Isot. Environ. Health Stud. 2005, 41, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Van der Berg, A.K.; Perkins, T.D. Evaluation of a portable chlorophyll meter to estimate chorophyll and nitrogen contents in sugar mapple (Acer saccharum Marsh.) leaves. For. Ecol. Manag. 2004, 200, 113–117. [Google Scholar] [CrossRef]
- Farahat, E.; Lechowicz, M.J. Functional ecology of growth in seedlings versus root sprouts of Fagus grandifolia Ehrh. Trees 2013, 27, 337–340. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Richards, R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Ubierna, N.; Farquhar, G.D. Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant Cell Environ. 2014, 37, 1494–1498. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photsynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Alpert, P. Nitrogen sharing among ramets increase clonal growth in Fragaria chiloensis. Ecology 1991, 72, 69–80. [Google Scholar] [CrossRef]
- Stuefer, J.F. Two types of division of labour in clonal plants: Benefits, costs and constraints. Perspect. Plant Ecol. Evol. Syst. 1998, 1, 47–60. [Google Scholar] [CrossRef]
- Kowarik, I. Clonal growth in Ailanthus altissima on a natural site in West Virginia. J. Veg. Sci. 1995, 6, 853–856. [Google Scholar] [CrossRef]
- Lusk, C.H.; Warton, D.I. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytol. 2007, 176, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 237–257. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveria, R.S. Plant Physiological Ecology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2019; 736p. [Google Scholar]
- Schmidt, S.; Stewart, G.R. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 2003, 134, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Piper, F.I.; Baeza, G.; Zúñiga-Feest, A.; Fajardo, A. Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum. Am. J. Bot. 2013, 100, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Paungfoo-Lonhienne, C.; Lonhienne, T.G.; Rentsch, D.; Robinson, N.; Christie, M.; Webb, R.I.; Gamage, H.K.; Carroll, B.J.; Schenk, P.M.; Schmidt, S. Plants can use protein as a nitrogen source without assistance from other organisms. Proc. Natl. Acad. Sci. USA 2008, 105, 4524–4529. [Google Scholar] [CrossRef]
- Godoy, R.; Marín, C. Mycorrhizal studies in temperate rainforests of Southern Chile. In Mycorrhizal Fungi in South America; Pagano, M.C., Lugo, M.A., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 315–341. [Google Scholar]
- Bond, W.J.; Midgley, J.J. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 2001, 16, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Mateo, M.A.; Ferrio, J.P.; Araus, J.L. Isótopos estables en fisiología vegetal. In La Ecofisiología Vegetal: Una Ciencia de Síntesis; Reigonsa, M.J., Pedrol, N., Sánchez, A., Eds.; Paranimfo, S.A. España: Madrid, Spain, 2004; pp. 113–160. [Google Scholar]
LCC (%) | LNC (%) * | Leaf C/N Ratio * | ||||
---|---|---|---|---|---|---|
Factors | p | αFDR | p | αFDR | p | αFDR |
Recruit type (RT) | 0.690 | 0.050 | 0.000 | 0.019 | 0.000 | 0.011 |
Species (SP) | 0.000 | 0.036 | 0.000 | 0.042 | 0.000 | 0.044 |
RT × SP | 0.540 | 0.014 | 0.049 | 0.008 | 0.058 | 0.022 |
Leaf δ13C (‰) | Leaf δ15N (‰) | |||
---|---|---|---|---|
Factors | p | αFDR | p | αFDR |
Recruit type (RT) | 0.001 | 0.031 | 0.000 | 0.039 |
Species (SP) | 0.000 | 0.006 | 0.000 | 0.033 |
RT × SP | 0.949 | 0.047 | 0.938 | 0.003 |
Variable | p | αFDR | Root Suckers | |
---|---|---|---|---|
Receiver | Donor | |||
LCC (%) | 0.288 | 0.02 | 45.87 ± 0.55 | 44.71 ± 2.18 |
LNC (%) | 0.443 | 0.04 | 2.16 ± 0.47 | 2.34 ± 0.64 |
Leaf δ13C (‰) | 0.327 | 0.03 | −33.12 ± 1.67 | −31.42 ± 2.72 |
Leaf δ15N (‰) | 0.752 | 0.05 | 0.81 ± 3.07 | 0.7 ± 2.64 |
12Ceq (mg) * | 0.020 | 0.01 | 0.49 ± 0.01 | 0.54 ± 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escandón, A.B.; Ferrio, J.P.; Saldaña, A.; Flores-Bavestrello, A.; Aburto, F.A.; Paula, S. Isotopic Signal Supports Physiological Integration in Root Suckers of Two Tree Species Differing in Shade Tolerance. Forests 2025, 16, 210. https://doi.org/10.3390/f16020210
Escandón AB, Ferrio JP, Saldaña A, Flores-Bavestrello A, Aburto FA, Paula S. Isotopic Signal Supports Physiological Integration in Root Suckers of Two Tree Species Differing in Shade Tolerance. Forests. 2025; 16(2):210. https://doi.org/10.3390/f16020210
Chicago/Turabian StyleEscandón, Antonio B., Juan Pedro Ferrio, Alfredo Saldaña, Alejandra Flores-Bavestrello, Felipe A. Aburto, and Susana Paula. 2025. "Isotopic Signal Supports Physiological Integration in Root Suckers of Two Tree Species Differing in Shade Tolerance" Forests 16, no. 2: 210. https://doi.org/10.3390/f16020210
APA StyleEscandón, A. B., Ferrio, J. P., Saldaña, A., Flores-Bavestrello, A., Aburto, F. A., & Paula, S. (2025). Isotopic Signal Supports Physiological Integration in Root Suckers of Two Tree Species Differing in Shade Tolerance. Forests, 16(2), 210. https://doi.org/10.3390/f16020210