The Geometry of Southern China’s Mangroves: Small and Elongated
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Dataset Summary
2.2. Data Preprocessing and Geometric Metrics Calculation
2.3. Local Mangrove Aggregation
2.4. Statistical Analysis
3. Results
3.1. Summary of Coastal China’s Mangrove Patches
3.2. Correlations Between Geometric Metrics
3.3. Geographic Patterns of Mangrove Area and Patch Number
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Liu, J.; Wilson, M.; Hu, G.; Liu, J.; Wu, J.; Yu, M. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc. Ecol. 2018, 33, 341–352. [Google Scholar] [CrossRef]
- Bregman, T.P.; Sekercioglu, C.H.; Tobias, J.A. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biol. Conserv. 2014, 169, 372–383. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef]
- Valente, J.J.; Gannon, D.G.; Hightower, J.; Kim, H.; Leimberger, K.G.; Macedo, R.; Rousseau, J.S.; Weldy, M.J.; Zitomer, R.A.; Fahrig, L.; et al. Toward conciliation in the habitat fragmentation and biodiversity debate. Landsc. Ecol. 2023, 38, 2717–2730. [Google Scholar] [CrossRef]
- Betts, M.G.; Wolf, C.; Pfeifer, M.; Banks-Leite, C.; Arroyo-Rodriguez, V.; Ribeiro, D.B.; Barlow, J.; Eigenbrod, F.; Faria, D.; Fletcher, R.J., Jr.; et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 2019, 366, 1236–1239. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1636–1657. [Google Scholar] [CrossRef] [PubMed]
- Woods, M.J.; Dietsch, G.; McEwan, R.W. Callery pear invasion in prairie restorations is predicted by proximity to forest edge, not species richness. Biol. Invasions 2022, 24, 3555–3564. [Google Scholar] [CrossRef]
- Kotowska, D.; Skórka, P.; Pärt, T.; Auffret, A.G.; Żmihorski, M. Spatial scale matters for predicting plant invasions along roads. J. Ecol. 2023, 112, 305–318. [Google Scholar] [CrossRef]
- Vanneste, T.; Depauw, L.; De Lombaerde, E.; Meeussen, C.; Govaert, S.; De Pauw, K.; Sanczuk, P.; Bollmann, K.; Brunet, J.; Calders, K.; et al. Trade-offs in biodiversity and ecosystem services between edges and interiors in European forests. Nat. Ecol. Evol. 2024, 8, 880–887. [Google Scholar] [CrossRef]
- Istanbuly, M.N.; Binesh, A.; Jabbarian Amiri, D.; Amini Parsa, V.; Jabbarian Amiri, B. Unveiling the threshold in forest patch shapes to soil retention ecosystem services. J. Environ. Manag. 2024, 368, 122188. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L. Patch-scale edge effects do not indicate landscape-scale fragmentation effects. Conserv. Lett. 2023, 17, e12992. [Google Scholar] [CrossRef]
- Willmer, J.N.G.; Püttker, T.; Prevedello, J.A. Global impacts of edge effects on species richness. Biol. Conserv. 2022, 272, 109654. [Google Scholar] [CrossRef]
- Cooke, S.C.; Balmford, A.; Donald, P.F.; Newson, S.E.; Johnston, A. Roads as a contributor to landscape-scale variation in bird communities. Nat. Commun. 2020, 11, 3125. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Muller, M.S.; Rodig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Saenger, P. Mangrove Ecology Silviculture and Conservation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Davidson-Arnott, R.; Bauer, B.; Houser, C. Introduction to Coastal Processes and Geomorphology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Chen, Y.; Chen, L.; Zhang, Z.; Cai, T. Tidal creeks mediate micro-climate within artificial mangroves at their northmost boundary in China. Ecol. Eng. 2023, 192, 106970. [Google Scholar] [CrossRef]
- McLachlan, R.L.; Ogston, A.S.; Asp, N.E.; Fricke, A.T.; Nittrouer, C.A.; Gomes, V.J.C. Impacts of tidal-channel connectivity on transport asymmetry and sediment exchange with mangrove forests. Estuar. Coast. Shelf Sci. 2020, 233, 106524. [Google Scholar] [CrossRef]
- Cui, L.; Ke, Y.; Min, Y.; Han, Y.; Zhang, M.; Zhou, D. Effects of tidal creeks on Spartina alterniflora expansion: A perspective from multi-scale remote sensing. Ecol. Indic. 2024, 160, 111842. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.H.; Lee, S.Y.; Kristensen, E.; Twilley, R.R. (Eds.) Mangrove Ecosystems: A Global Biogeographic Perspective; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Rönnbäck, P. The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecol. Econ. 1999, 29, 235–252. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Ding, Y.P.; Wang, W.Q.; Li, Y.X.; Wang, M. Distribution of fish among Avicennia and Sonneratia microhabitats in a tropical mangrove ecosystem in South China. Ecosphere 2019, 10, e02759. [Google Scholar] [CrossRef]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vincent, J.R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. USA 2009, 106, 7357–7360. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 2018, 8, 240–244. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.-M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 32. [Google Scholar] [CrossRef]
- Worthington, T.; Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity. Univ. Camb. Repos. 2018. [Google Scholar] [CrossRef]
- Primavera, J.H.; Esteban, J.M.A. A review of mangrove rehabilitation in the Philippines: Successes, failures and future prospects. Wetl. Ecol. Manag. 2008, 16, 345–358. [Google Scholar] [CrossRef]
- Friess, D.A.; Yando, E.S.; Abuchahla, G.M.O.; Adams, J.B.; Cannicci, S.; Canty, S.W.J.; Cavanaugh, K.C.; Connolly, R.M.; Cormier, N.; Dahdouh-Guebas, F.; et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 2020, 30, R153–R154. [Google Scholar] [CrossRef] [PubMed]
- IUCN. Red List of Ecosystems. Available online: https://iucnrle.org (accessed on 14 June 2024).
- Wang, W.; Fu, H.; Lee, S.Y.; Fan, H.; Wang, M. Can Strict Protection Stop the Decline of Mangrove Ecosystems in China? From Rapid Destruction to Rampant Degradation. Forests 2020, 11, 55. [Google Scholar] [CrossRef]
- Li, C.; Wang, F.; Yang, P.; Wang, F.-c.; Hu, Y.-z.; Zhao, Y.-l.; Tian, L.-z.; Zhao, R. Mangrove wetlands distribution status identification, changing trend analyzation and carbon storage assessment of China. China Geol. 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Zhu, B.; Liao, J.; Shen, G. Combining time series and land cover data for analyzing spatio-temporal changes in mangrove forests: A case study of Qinglangang Nature Reserve, Hainan, China. Ecol. Indic. 2021, 131, 108135. [Google Scholar] [CrossRef]
- Shi, M.; Li, H.; Jia, M. Spatio-temporal variations in mangrove forests in the Shankou Mangrove Nature Reserve based on the GEE cloud platform and Landsat data. Remote Sens. Nat. Resour. 2023, 35, 61–69. [Google Scholar] [CrossRef]
- Long, K.; Chen, Z.; Zhang, H.; Zhang, M. Spatiotemporal disturbances and attribution analysis of mangrove in southern China from 1986 to 2020 based on time-series Landsat imagery. Sci. Total Environ. 2024, 912, 169157. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, L.; Wang, Z.; Su, Y.; Su, Y.; Huang, Y.; Jia, M.; Mao, D. The national nature reserves in China: Are they effective in conserving mangroves? Ecol. Indic. 2022, 142, 109265. [Google Scholar] [CrossRef]
- Liu, M.; Leung, F.; Lee, S.-Y. Interpreting Mangrove Habitat and Coastal Land Cover Change in the Greater Bay Area, Southern China, from 1924 to 2020 Using Historical Aerial Photos and Multiple Sources of Satellite Data. Remote Sens. 2022, 14, 5163. [Google Scholar] [CrossRef]
- Zhao, C.P.; Qin, C.Z. A detailed mangrove map of China for 2019 derived from Sentinel-1 and -2 images and Google Earth images. Geosci. Data J. 2021, 9, 74–88. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, S.; He, Y.; You, S.; Yang, X.; Gan, Y.; Liu, A. A Fine-Scale Mangrove Map of China Derived from 2-Meter Resolution Satellite Observations and Field Data. ISPRS Int. J. Geo-Inf. 2021, 10, 18. [Google Scholar] [CrossRef]
- Zheng, Y.; Takeuchi, W. Quantitative Assessment and Driving Force Analysis of Mangrove Forest Changes in China from 1985 to 2018 by Integrating Optical and Radar Imagery. ISPRS Int. J. Geo-Inf. 2020, 9, 17. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Li, Y.; Liu, W.; Chen, Y.; Zhang, Y.; Li, Y. Spatially discontinuous relationships between salt marsh invasion and mangrove forest fragmentation. For. Ecol. Manag. 2021, 499, 119611. [Google Scholar] [CrossRef]
- Gu, X.; Feng, H.; Tang, T.; Tam, N.F.-Y.; Pan, H.; Zhu, Q.; Dong, Y.; Fazlioglu, F.; Chen, L. Predicting the invasive potential of a non-native mangrove reforested plant (Laguncularia racemosa) in China. Ecol. Eng. 2019, 139, 12–24. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Q.; Peng, Y.; Pan, L.; Chen, Y.; Zhang, Y.; Chen, L. Distributions of the Non-Native Mangrove Sonneratia apetala in China: Based on Google Earth Imagery and Field Survey. Wetlands 2022, 42, 35. [Google Scholar] [CrossRef]
- Zhao, Z.; Yuan, L.; Li, W.; Tian, B.; Zhang, L. Re-invasion of Spartina alterniflora in restored saltmarshes: Seed arrival, retention, germination, and establishment. J. Environ. Manag. 2020, 266, 110631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, Z.; Guo, X.; Zhang, Y.; Deng, Y.; Wang, M.; Wang, W. Invasibility framework to predict the early colonization of alien Sonneratia in mangrove: Implications for coastal area management. J. Environ. Manag. 2024, 364, 121461. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Sachs, J.P.; Zhang, H.; Ding, Y.; Jin, G.e.; Zhao, M. Spatiotemporal variations of organic matter sources in two mangrove-fringed estuaries in Hainan, China. Org. Geochem. 2020, 147, 13. [Google Scholar] [CrossRef]
- Abd Kadir, N.A. Investigation on the Impact of Boat Wakes to Mangrove Degradatio. 2015. Available online: http://utpedia.utp.edu.my/id/eprint/15627 (accessed on 4 October 2024).
- Bhargava Gajre, R.; Rahman, M.S.; Ghosh, T.; Friess, D.A. Variations in biophysical characteristics of mangroves along retreating and advancing shorelines. Sci. Total Environ. 2024, 926, 171690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ahmed, M.R.; Zhang, Q.; Li, Y.; Li, Y. Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking. Remote Sens. 2023, 15, 625. [Google Scholar] [CrossRef]
- Friess, D.A. Global mangrove mapping has gone mainstream. Sci. Bull. 2023, 68, 2145–2147. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2010, 20, 154–159. [Google Scholar] [CrossRef]
- Zhang, T.; You, S.; Yang, X.; Hu, S. Mangroves Map of China 2018 (MC2018) Derived from 2-Meter Resolution Satellite Observations and Field Data; Science Data Bank: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Schauman, S.A.; Peñuelas, J.; Jobbágy, E.G.; Baldi, G. The geometry of global protected lands. Nat. Sustain. 2023, 7, 82–89. [Google Scholar] [CrossRef]
- Hijmans, R.J. Spatial Data Analysis [R Package Terra Version 1.7-78]. Comprehensive R Archive Network (CRAN). 2024. Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 4 October 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Resasco, J.; Haddad, N.M.; Orrock, J.L.; Shoemaker, D.; Brudvig, L.A.; Damschen, E.I.; Tewksbury, J.J.; Levey, D.J. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology 2014, 95, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- Vilà, M.; Ibáñez, I. Plant invasions in the landscape. Landsc. Ecol. 2011, 26, 461–472. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T.; Traag, V.; Horvát, S.; Zanini, F.; Noom, D.; Müller, K. Igraph: Network Analysis and Visualization in R. R Package Version (2.1.2). 2024. Available online: https://CRAN.R-project.org/package=igraph (accessed on 4 October 2024).
- Oskansen, J.; Blanchet, F.; Kindt, R. Vegan: Community Ecology Package. R Package Version 2.0-7. 2022. Available online: http://CRAN.R-project.org/package=vegan (accessed on 4 October 2024).
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Konietschke, F.; Placzek, M.; Schaarschmidt, F.; Hothorn, L.A. nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J. Stat. Softw. 2015, 64, 1–17. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Gao, J.; Lundquist, C.J.; Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high, latitudes using spatial metrics. Estuar. Coast. Shelf Sci. 2018, 215, 1–10. [Google Scholar] [CrossRef]
- Huang, Z.S.; Yao, H.M.; Wang, M.S.; Liu, Y.; Chen, M.J.; Zhong, M.Y.; Qiao, J.C. Tracking the Effects of Mangrove Changes and Spartina alterniflora Invasion on Soil Carbon Storage: A Case Study of the Beibu Gulf of Guangxi, China. Land 2024, 13, 18. [Google Scholar] [CrossRef]
- Yao, H.; Chen, M.; Huang, Z.; Huang, Y.; Wang, M.; Liu, Y. Remote sensing monitoring and potential distribution analysis of Spartina alterniflora in coastal zone of Guangxi. Ecol. Evol. 2024, 14, e11469. [Google Scholar] [CrossRef] [PubMed]
- Meijer, K.J.; El-Hacen, E.-H.M.; Govers, L.L.; Lavaleye, M.; Piersma, T.; Olff, H. Mangrove-mudflat connectivity shapes benthic communities in a tropical intertidal system. Ecol. Indic. 2021, 130, 108030. [Google Scholar] [CrossRef]
- Hickey, S.M.; Radford, B.; Callow, J.N.; Phinn, S.R.; Duarte, C.M.; Lovelock, C.E. ENSO feedback drives variations in dieback at a marginal mangrove site. Sci. Rep. 2021, 11, 8130. [Google Scholar] [CrossRef]
- Primavera, J.H. Mangroves, Fishponds, and the Quest for Sustainability. Science 2005, 310, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; van Rees, F.; Xie, D.; Kleinhans, M.G.; van Maanen, B. Salt marshes create more extensive channel networks than mangroves. Nat. Commun. 2022, 13, 2017. [Google Scholar] [CrossRef] [PubMed]
- van Maanen, B.; Coco, G.; Bryan, K.R. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc. Math. Phys. Eng. Sci. 2015, 471, 20150115. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.Y.S. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: Implication for the impact of restoration and afforestation. Glob. Ecol. Conserv. 2015, 4, 423–433. [Google Scholar] [CrossRef]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Kang, C.S.; Sharma, S.; Amir, A.A. Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sens. 2021, 13, 30. [Google Scholar] [CrossRef]
ID | Metrics | Definition | Unit |
---|---|---|---|
#1 | Area | The area of patch polygon. | m2 |
#2 | Maximum depth (MaxD) | The maximum value of the distance from any point within the polygon to the nearest edge. | m |
#3 | Perimeter (PER) | The perimeter of each patch. | m |
#4 | Perimeter-to-area ratio (PAR) | Ratio of the perimeter to the area of the patch. | m−1 |
#5 | Depth compactness (DC) | Ratio of the maximum depth to the radius of a circle equal in area to the patch. | unitless |
#6 | Polsby–Popper (PPR) | Ratio of the patch area to the area of equal perimeter circle. | unitless |
#7 | Convex Hull Ratio (CHR) | Ratio of the patch area to the area of the minimum convex polygon that encloses the patch polygon. | unitless |
#8 | Reock | Ratio of the patch area to the area of the minimum bounding circle that encloses the patch polygon. | unitless |
#9 | Bounding box ratio (BBR) | Ratio of the patch area to the area of the minimum bounding box that encloses the patch polygon. | unitless |
#10 | Elongation | Ratio of the minor axis to the major axis of the patch polygon. | unitless |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Deng, Y.; Wang, W.; Wang, M. The Geometry of Southern China’s Mangroves: Small and Elongated. Forests 2025, 16, 212. https://doi.org/10.3390/f16020212
Zhang L, Deng Y, Wang W, Wang M. The Geometry of Southern China’s Mangroves: Small and Elongated. Forests. 2025; 16(2):212. https://doi.org/10.3390/f16020212
Chicago/Turabian StyleZhang, Lin, Yijuan Deng, Wenqing Wang, and Mao Wang. 2025. "The Geometry of Southern China’s Mangroves: Small and Elongated" Forests 16, no. 2: 212. https://doi.org/10.3390/f16020212
APA StyleZhang, L., Deng, Y., Wang, W., & Wang, M. (2025). The Geometry of Southern China’s Mangroves: Small and Elongated. Forests, 16(2), 212. https://doi.org/10.3390/f16020212