Global Value Chain Embedding and Total Factor Productivity in Carbon Emission Reduction: A Multi-Country Analysis of the Paper Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Current Status of Low-Carbon Total Factor Productivity Research
2.2. The Impact of Global Value Chain Embedding on Low Carbon Total Factor Productivity
2.3. Summary and Innovation Points
3. Theoretical Mechanism and Research Hypotheses
3.1. The Impact of Global Value Chain Division of Labour Positions on Low-Carbon Total Factor Productivity
3.2. The Impact of Global Value Chain Participation on Low-Carbon Total Factor Productivity
3.3. Summary
4. Model Specification and Variable Selection
4.1. Primary Model Specification
4.1.1. Threshold Effects Model
4.1.2. Slack-Based Measure and Global Malmquist–Luenberger Index Model
4.1.3. Multi-Regional Input–Output Model
4.2. Variable Selection and Data Sources
4.2.1. Dependent Variable: Low-Carbon Total Factor Productivity
4.2.2. Independent Variable: Global Value Chain Participation and Division of Labour
4.2.3. Control Variables
5. Results
5.1. Current State and Trends of Low-Carbon Total Factor Productivity
5.2. Baseline Regression
5.3. Endogeneity Test
5.4. Threshold Effect Test
5.5. Robustness Test
5.6. Heterogeneity Test
6. Discussion
6.1. Results Comparison
6.2. Validity, Reliability, and Generalisability
6.3. Implications
7. Conclusions and Recommendations
Limitations and Reflections
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dür, A.; Eckhardt, J.; Poletti, A. Global value chains, the anti-globalization backlash, and EU trade policy: A research agenda. J. Eur. Public Policy 2020, 27, 944–956. [Google Scholar] [CrossRef]
- Song, Y.; Yu, C.; Hao, L.; Chen, X. Path for China’s high-tech industry to participate in the reconstruction of global value chains. Technol. Soc. 2021, 65, 101486. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Cheng, Z. Can embedding in global value chain drive green growth in China’s manufacturing industry? J. Clean. Prod. 2020, 268, 121962. [Google Scholar] [CrossRef]
- Ali, M.U.; Wang, Y. Is participation in global value chains a blessing or a curse for green total factor productivity in Belt and Road initiative countries? J. Clean. Prod. 2023, 426, 138963. [Google Scholar] [CrossRef]
- Yoichi, K.; Yokobori, K. Environment, Energy, and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997. [Google Scholar]
- Wu, X.; Li, L. The Differences and Enhancing Potential of Provincial Carbon Productivity and Energy Efficiency. Econ. Geogr. 2014, 34, 105–108. [Google Scholar]
- Zhang, L. Research of Total Factor Carbon Productivity and Influence Factors Based on the DEA Model. J. Ind. Technol. Econ. 2013, 32, 142–149. [Google Scholar]
- Hu, X.; Liu, C. Total factor productivity measurement with carbon reduction. Eng. Constr. Arch. Manag. 2017, 24, 575–592. [Google Scholar] [CrossRef]
- Su, T.; Chen, Y.; Lin, B. Uncovering the role of renewable energy innovation in China’s low carbon transition: Evidence from total-factor carbon productivity. Environ. Impact Assess. Rev. 2023, 101, 107–128. [Google Scholar] [CrossRef]
- Bai, X.; Sun, X. Impact of internet development on total factor carbon productivity: Induced by cost, innovation, or demand? China Popul. Resour. Environ. 2021, 31, 105–117. [Google Scholar]
- Wang, R.; Deng, X.; Gao, Y.; Chen, J. Does regional economic development drive sustainable grain production growth in China? Evidence from spatiotemporal perspective on low-carbon total factor productivity. Socio-Econ. Plan. Sci. 2025, 98, 102–129. [Google Scholar]
- Sun, X.; Wang, J. The Effect of Global Value Chain Embeddedness on Total Factor Productivity: An Empirical Analysis Based on Chinese Company-Level Micro-Data. J. Int. Trade 2016, 3, 3–14. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, Y.; Chen, Y. The Effect of Global Value Chain Embeddedness on Productivity: An Analysis of its Impact and Mechanism. J. World Econ. 2017, 40, 28–51. [Google Scholar]
- Morris, M.; Staritz, C. Industrialization trajectories in Madagascar’s export apparel industry: Ownership, embeddedness, markets, and upgrading. World Dev. 2014, 56, 243–257. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, G. Can global value chain participation affect embodied carbon emission intensity? J. Clean. Prod. 2021, 287, 125069. [Google Scholar] [CrossRef]
- Nawaz, A.; Rahman, M.M. Global value chains participation and environmental degradation in SAARC economies. Environ. Dev. Sustain. 2023, 26, 1–23. [Google Scholar] [CrossRef]
- Yan, B.; Xia, Y.; Jiang, X. Carbon productivity and value-added generations: Regional heterogeneity along global value chain. Struct. Change Econ. Dyn. 2023, 65, 111–125. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Yan, J. The Double Effect of Global Value Chain Embeddedness on Energy Conservation and Emission Reduction: An Empirical Study on Panel Data of China’s Industries. China Soft Sci. 2015, 8, 148–162. [Google Scholar]
- Sanguinet, E.R.; Azzoni, C.R.; Alvim, A.M. Resource-Based Industries and CO2 emissions embedded in value chains: A Regional Analysis for Selected Countries in Latin America. Atmosphere 2022, 13, 856. [Google Scholar] [CrossRef]
- Xu, D.; Yu, F.; Sharla, C. Can Global Value Chain Participation Promote the Low-carbon Total Factor Productivity of Industry in China? World Econ. Stud. 2019, 8, 60–72+135. [Google Scholar]
- Xu, D.; Han, J. The Effect of Dual Circulation Value Chain Embeddedness on Low-carbon Total Factor Productivity. J. China Univ. Geosci. (Soc. Sci. Ed.) 2022, 22, 99–114. [Google Scholar]
- Xie, H.; Huang, L.; Liu, D. Does GVC Participation Increase Chinese Manufacturing’s Carbon Productivity. J. Int. Trade 2018, 432, 109–121. [Google Scholar]
- Li, Y.; Wang, Y.; Li, J.; Huang, Q. Global value chain embedding mode and carbon emission efficiency: Evidence from China’s manufacturing industry. Technol. Forecast. Soc. Change 2023, 194, 122661. [Google Scholar] [CrossRef]
- Jorgenson, D. The theory of investment behavior. In Determinants of Investment Behavior; National Bureau of Economic Research: Cambridge, MA, USA, 1967; pp. 129–175. [Google Scholar]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization. Industrial Development Report 2002/2003: Competing Through Innovation and Learning; United Nations Industrial Development Organization: Vienna, Austria, 2002. [Google Scholar]
- Yang, F.; Sun, W.; Zhang, S. Embedding in Global Value Chains, Technological Progress and Pollution: A Study Using Industries Data in China. World Econ. Stud. 2017, 2, 126–134+137. [Google Scholar]
- Koopman, R.; Powers, W.; Wang, Z.; Shang, J.W. Give Credit Where Credit is Due: Tracing Value Added in Global Production Chains; National Bureau of Economic Research: Cambridge, MA, USA, 2010. [Google Scholar]
- Wang, Z.; Wei, S.J.; Yu, X.; Zhu, K. Measures of Participation in Global Value Chains and Global Business Cycles; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar]
- Gereffi, G.; Lee, J. Why the world suddenly cares about global supply chains. J. Supply Chain. Manag. 2012, 48, 24–32. [Google Scholar] [CrossRef]
- Ye, J.; Jia, L. Innovation and Total Factor Productivity of Enterprises: Evidence from Manufacturing Enterprises in China. Study Explor. 2016, 5, 105–111+160. [Google Scholar]
- Humphrey, J.; Schmitz, H. How does insertion in global value chains affect upgrading in industrial clusters? Reg. Stud. 2002, 36, 1017–1027. [Google Scholar] [CrossRef]
- Liang, J.; Zhong, S.; Mao, Y. Does Global Production Network Improve Total Factor Productivity? J. Beijing Technol. Bus. Univ. (Soc. Sci.) 2022, 37, 99–112. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Oh, D. A meta frontier approach for measuring an environmentally sensitive productivity growth index. Energy Econ. 2010, 32, 146–157. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, J. The impact of China’s foreign direct investment on the countries along the “the Belt and Road” to climb the global value chain. J. Nanjing Univ. (Philos. Humanit. Soc. Sci.) 2018, 55, 35–46. [Google Scholar]
- GB/T 2659-2000; Codes for the Representation of Names of Countries and Regions. The State Bureau of Quality and Technical Supervision: Beijing, China, 2001.
- Chen, Q.; Lin, S.; Zhang, X. The Effect of China’s Incentive Policies for Technological Innovation: Incentivizing Quantity or Quality. China Ind. Econ. 2020, 4, 79–96. [Google Scholar]
- Yanikkaya, H.; Altun, A. The impact of global value chain participation on sectoral growth and productivity. Sustainability 2020, 12, 4848. [Google Scholar] [CrossRef]
- Zhu, H. Global value chains, trade liberalization, and productivity: A stochastic frontier analysis of Chinese manufacturing firms. Appl. Econ. 2023, 55, 1422–1435. [Google Scholar] [CrossRef]
- Qian, Z.; Zhao, Y.; Shi, Q.; Zheng, L.; Wang, S.; Zhu, J. Global value chains participation and CO2 emissions in RCEP countries. J. Clean. Prod. 2022, 332, 130070. [Google Scholar] [CrossRef]
- Shahid, R.; Shijie, L.; Yifan, N.; Jian, G. Pathway to green growth: A panel-ARDL model of environmental upgrading, environmental regulations, and GVC participation for the Chinese manufacturing industry. Front. Environ. Sci. 2022, 10, 1206. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S.; Ma, X.; Zhao, X.; Song, Y.; Fan, Y.; Yu, Y. Global Value Chains Embedding and Carbon Productivity of China’s Manufacturing Industry: Direct Influence, Adjustment Effect, and Heterogeneity Analysis. Sustainability 2023, 15, 13272. [Google Scholar] [CrossRef]
- Lotz, C. Expanding the space for future resource management: Explorations of the timber frontier in northern Europe and the rescaling of sustainability during the nineteenth century. Environ. Hist. 2015, 21, 257–279. [Google Scholar] [CrossRef]
- Jaunky, V.C.; Lundmark, R. Dynamics of timber market integration in Sweden. Forests 2015, 6, 4617–4633. [Google Scholar] [CrossRef]
- Reboredo, F.; Pais, J. Evolution of forest cover in Portugal: A review of the 12th–20th centuries. J. For. Res. 2014, 25, 249–256. [Google Scholar] [CrossRef]
- Yu, L.; Sun, Y.; Liu, X.; Wang, T. Does regional value chain participation affect global value chain positions? Evidence from China. Econ. Res.-Ekon. Istraživanja 2023, 36, 2108474. [Google Scholar] [CrossRef]
- Tian, K.; Dietzenbacher, E.; Jong-A-Pin, R. Global value chain participation and its impact on industrial upgrading. World Econ. 2022, 45, 1362–1385. [Google Scholar] [CrossRef]
- Kummritz, V.; Taglioni, D.; Winkler, D.E. Economic upgrading through global value chain participation: Which policies increase the value added gains? World Bank Policy Res. Work. Pap. 2017, 8007. [Google Scholar] [CrossRef]
- Toczyłowska-Mamińska, R. Limits and perspectives of pulp and paper industry wastewater treatment–A review. Renew. Sustain. Energy Rev. 2017, 78, 764–772. [Google Scholar] [CrossRef]
Component | Symbol | Decomposition | Symbol | Code |
---|---|---|---|---|
Domestic value-added absorbed by foreign countries | DVA | Domestic value-added embodied in final goods exports | DVA_FIN | T1 |
Intermediate goods exports absorbed directly by the importing country | DVA_INT | T2 | ||
Intermediate goods exports absorbed by the importing country through direct production for re-export to a third country | DVA_INTREX | T3 + T4 + T5 | ||
Domestic value-added returned and absorbed domestically | RDV | / | / | T6 + T7 + T8 |
Foreign value-added | FVA | Value-added implied by exports to the importing country | MVA | T11 + T12 |
Value-added implied by exports to other countries | OVA | T14 + T15 | ||
Pure double-counting parts | PDC | Pure double counting from the domestic account | DDC | T9 + T10 |
Pure double counting from the foreign account | FDC | T13 + T16 |
Variables | Definitions | Main Sources | Links |
---|---|---|---|
Expected output | Industrial total output | WIOD, ADBWRIO | https://www.rug.nl/ggdc/valuechain/wiod/ (accessed on 30 April 2024) https://kidb.adb.org/globalization (accessed on 30 April 2024) |
Undesired output | Industrial carbon dioxide emissions | WIOD, EDGAR-IND | https://www.rug.nl/ggdc/valuechain/wiod/ (accessed on 30 April 2024) https://edgar.jrc.ec.europa.eu/gallery?release=v70ghg&substance=CO2_excl_short-cycle_org_C§or=IND (accessed on 30 April 2024) |
Labour input | Industrial employment | WIOD-SEA, ILOSTAT, pwt100, World Bank Databese, IMF-IFS | https://www.rug.nl/ggdc/valuechain/wiod/wiod-2016-release (accessed on 30 April 2024) https://ilostat.ilo.org/data/ (accessed on 30 April 2024) https://www.rug.nl/ggdc/productivity/pwt/ (accessed on 30 April 2024) https://data.worldbank.org/ (accessed on 30 April 2024) https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b (accessed on 30 April 2024) |
Capital input | Industrial nominal capital stock | ||
Energy input | Industrial total energy consumption | ||
GVC participation | Industrial degree of participation in the GVC | WIOD, ADBWRIO | https://www.rug.nl/ggdc/valuechain/wiod/ (accessed on 30 April 2024) https://kidb.adb.org/globalization (accessed on 30 April 2024) |
GVC position | Industrial position in the GVC | ||
Industrial structure | Proportion of paper industry output to the total output of the manufacturing industry | ||
Energy consumption structure | Proportion of coal consumption in paper industry to the total energy consumption of the industry | WIOD, World Energy Statistics Yearbook | https://www.rug.nl/ggdc/valuechain/wiod/ (accessed on 30 April 2024) https://digitallibrary.un.org/record/4037837?v=pdf (accessed on 30 April 2024) |
Country | LCTFP | EC | BPC | Country | LCTFP | EC | BPC |
---|---|---|---|---|---|---|---|
Malta | 0.650 | 1.000 | 1.053 | Australia | 0.023 | 0.937 | 1.234 |
United States | 0.584 | 1.000 | 1.048 | Portugal | 0.023 | 0.955 | 1.081 |
Luxembourg | 0.438 | 1.013 | 1.199 | Slovak Republic | 0.022 | 1.004 | 1.106 |
Ireland | 0.391 | 1.000 | 1.100 | Romania | 0.022 | 0.985 | 1.114 |
China | 0.286 | 1.085 | 1.954 | Hungary | 0.019 | 0.936 | 1.096 |
Japan | 0.134 | 0.987 | 1.189 | France | 0.019 | 0.876 | 1.308 |
Overall | 0.088 | 0.952 | 1.192 | Canada | 0.018 | 0.945 | 1.357 |
Estonia | 0.077 | 0.892 | 1.164 | Czech Republic | 0.018 | 0.961 | 1.077 |
Croatia | 0.076 | 1.271 | 1.171 | United Kingdom | 0.017 | 0.888 | 1.407 |
Norway | 0.074 | 0.934 | 1.123 | Poland | 0.015 | 0.946 | 1.068 |
Denmark | 0.050 | 0.958 | 1.088 | Italy | 0.014 | 0.887 | 1.478 |
Switzerland | 0.047 | 0.919 | 1.144 | Spain | 0.014 | 0.867 | 1.240 |
Germany | 0.041 | 0.868 | 1.746 | Korea, Republic of | 0.012 | 0.991 | 1.481 |
Latvia | 0.038 | 0.965 | 1.123 | Bulgaria | 0.012 | 0.928 | 1.102 |
Greece | 0.035 | 0.965 | 1.092 | Turkey | 0.009 | 0.922 | 1.084 |
Finland | 0.029 | 0.927 | 1.159 | Taiwan | 0.009 | 0.925 | 1.079 |
Netherlands | 0.026 | 0.912 | 1.239 | Mexico | 0.006 | 0.886 | 1.190 |
Belgium | 0.026 | 0.934 | 1.095 | Brazil | 0.005 | 0.895 | 1.195 |
Sweden | 0.025 | 0.916 | 1.172 | Russia | 0.004 | 1.015 | 1.145 |
Lithuania | 0.025 | 0.929 | 1.105 | Indonesia | 0.003 | 0.916 | 1.068 |
Austria | 0.024 | 0.931 | 1.088 | India | 0.001 | 0.920 | 1.072 |
Slovenia | 0.023 | 0.949 | 1.107 |
Variable | Sample Size | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
LCTFP | 882 | 0.081 | 0.177 | 0.001 | 1.000 |
GVC_PA | 882 | 0.611 | 0.252 | 0.145 | 1.454 |
GVC_PO | 882 | 0.063 | 0.107 | −0.181 | 0.445 |
IS | 882 | 0.060 | 0.032 | 0.011 | 0.197 |
ES | 882 | 0.060 | 0.118 | 0.000 | 0.764 |
Variable | Chi2 | p Value | Kao Cointegration Test | Statistic | p Value |
---|---|---|---|---|---|
LCTFP | 120.713 | 0.005 | Modified Dickey–Fuller t | −1.782 | 0.037 |
GVC_PA | 102.298 | 0.085 | Dickey–Fuller t | −1.783 | 0.037 |
GVC_PO | 124.604 | 0.003 | Augmented Dickey–Fuller t | 2.110 | 0.017 |
d.IS | 890.895 | 0.000 | Unadjusted modified Dickey–Fuller t | −3.705 | 0.000 |
ES | 147.665 | 0.000 | Unadjusted Dickey–Fuller t | −2.844 | 0.002 |
Variable | GVC_PA | GVC_PO | IS | ES |
---|---|---|---|---|
Coefficient | 0.018 (0.33) | 0.264 *** (3.27) | 2.219 *** (7.78) | −0.390 *** (−6.38) |
LCTFPt−1 | 0.616 *** | GVC_PA | 0.056 *** | GVC_PO | 0.349 *** | IS | 3.606 *** |
ES | −0.106 *** | AR(1) | 0.075 (−1.78) | Ar(2) | 0.147 (1.45) | Hansen Tset | 0.137 (41.94) |
Threshold Value | 0.210 | F Value | 51.30 | p Value | 0.040 | 5% Critical Value | 45.872 |
GVC_PA_0 | −0.019 | GVC_PA_1 | 0.126 *** | IS | 2.137 *** | ES | −0.423 *** |
Variable | GVC_PA | GVC_PO | IS | ES | — |
Coefficient | 0.026 (0.48) | 0.243 *** (3.03) | 2.378 *** (8.17) | −0.454 *** (−6.91) | — |
Threshold Value | 0.210 | p Value | 0.040 | GVC_PA_0 | −0.013 |
GVC_PA_1 | 0.125 *** | IS | 2.292 *** | ES | −0.476 *** |
Group | EU Country | Threshold Value | 0.212 *** | F Value | 63.67 | 5% Critical Value | 45.764 |
GVC_PA_0 | −0.032 | GVC_PA_1 | 0.147 *** | IS | 2.132 *** | ES | −0.166 |
Group | Non-EU Country | Threshold Value | 0.009 * | F Value | 9.62 | 5% Critical Value | 11.270 |
GVC_PA_0 | −0.965 *** | GVC_PA_1 | 0.262 * | IS | 1.774 ** | ES | −0.476 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Li, H.; Cheng, B.; Li, F.; Mikkilä, M. Global Value Chain Embedding and Total Factor Productivity in Carbon Emission Reduction: A Multi-Country Analysis of the Paper Industry. Forests 2025, 16, 222. https://doi.org/10.3390/f16020222
Xie X, Li H, Cheng B, Li F, Mikkilä M. Global Value Chain Embedding and Total Factor Productivity in Carbon Emission Reduction: A Multi-Country Analysis of the Paper Industry. Forests. 2025; 16(2):222. https://doi.org/10.3390/f16020222
Chicago/Turabian StyleXie, Xiwei, Huijuan Li, Baodong Cheng, Fangfang Li, and Mirja Mikkilä. 2025. "Global Value Chain Embedding and Total Factor Productivity in Carbon Emission Reduction: A Multi-Country Analysis of the Paper Industry" Forests 16, no. 2: 222. https://doi.org/10.3390/f16020222
APA StyleXie, X., Li, H., Cheng, B., Li, F., & Mikkilä, M. (2025). Global Value Chain Embedding and Total Factor Productivity in Carbon Emission Reduction: A Multi-Country Analysis of the Paper Industry. Forests, 16(2), 222. https://doi.org/10.3390/f16020222