Uncertainty Analysis of Remote Sensing Estimation of Chinese Fir (Cunninghamia lanceolata) Aboveground Biomass in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Field Survey Data
2.2.2. The Collection and Analysis of Remote Sensing Data
2.2.3. The Process of Extracting and Selecting Remote Sensing Variables
2.3. Remote Sensing Models
2.4. Accuracy Assessment
2.5. Analysis of the Uncertainty
2.5.1. Calculation of the Plot Scale Uncertainty
- (1)
- Calculation of the Residual Uncertainty in the Per-tree Biomass Model
- (2)
- Calculation of the Parameter Uncertainty in the Per-tree Biomass Model
- (3)
- Synthesis of Uncertainty
2.5.2. Calculation of Uncertainty for Remote Sensing Models
2.5.3. Calculation of Total Uncertainty from Different Sources
3. Results and Analysis
3.1. Accuracy of Different Remote Sensing Models
3.2. Calculation of Plot Scale Uncertainty
3.2.1. Uncertainty of the Per-Tree Biomass Model
3.2.2. Uncertainty at the Plot Scale
3.3. Uncertainty of Remote Sensing Estimation Models
3.4. Total Uncertainty in Biomass Estimation
4. Discussion
4.1. Analysis of Plot Scale Uncertainty
4.2. Uncertainty in Different Remote Sensing Estimation Models
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, W.; Cai, J.; Wu, H.; Liu, J.; Zhang, H.; Huang, H. An assessment of carbon storage in China’s arboreal forests. Forests 2017, 8, 110. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Shoch, D.; Ellis, P.W. Dynamic global monitoring needed to use restoration of forest cover as a climate solution. Nat. Clim. Chang. 2021, 11, 366–368. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Liu, L.; Zhou, D. Impact of renewable energy investment on carbon emissions in China—An empirical study using a nonparametric additive regression model. Sci. Total Environ. 2021, 785, 147109. [Google Scholar] [CrossRef]
- Cieszewski, C.J.; Zasada, M.; Lowe, R.C.; Liu, S. Estimating Biomass and Carbon Storage by Georgia Forest Types and Species Groups Using the FIA Data Diameters, Basal Areas, Site Indices, and Total Heights. Forests 2021, 12, 141. [Google Scholar] [CrossRef]
- Qian, C.; Qiang, H.; Wang, F.; Li, M. Estimation of Forest Aboveground Biomass in Karst Areas Using Multi-Source Remote Sensing Data and the K-DBN Algorithm. Remote Sens. 2021, 13, 5030. [Google Scholar] [CrossRef]
- Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Geller, G.N. Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131. [Google Scholar] [CrossRef]
- Luo, K. Spatial pattern of forest carbon storage in the vertical and horizontal directions based on HJ-CCD remote sensing imagery. Remote Sens. 2019, 11, 788. [Google Scholar] [CrossRef]
- Long, Y.; Jiang, F.; Sun, H.; Wang, T.; Zou, Q.; Chen, C.S. Estimating vegetation carbon storage based on optimal bandwidth selected from geographically weighted regression model in Shenzhen City. Acta Ecol. Sin. 2022, 42, 4933–4945. [Google Scholar]
- Zharko, V.O.; Bartalev, S.A.; Sidorenkov, V.M. Forest growing stock volume estimation using optical remote sensing over snow-covered ground: A case study for Sentinel-2 data and the Russian Southern Taiga region. Remote Sens. Lett. 2020, 11, 677–686. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, L.; Yao, Y.; Jia, J.; Li, R.; Ren, Z.; He, X.Y.; Ye, Z.W.; Zhang, X.Y.; Chen, Y.Y.; et al. Spatially continuous estimation of urban forest aboveground biomass with UAV-LiDAR and multispectral scanning: An allometric model of forest structural diversity. Agric. For. Meteorol. 2025, 360, 110301. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S.; Cutler, M.E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Saah, D. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Ehlers, D.; Wang, C.; Coulston, J.; Zhang, Y.; Pavelsky, T.; Frankenberg, E.; Song, C. Mapping forest aboveground biomass using multisource remotely sensed data. Remote Sens. 2022, 14, 1115. [Google Scholar] [CrossRef]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; d’Alessandro, M.M.; Villard, L. Relating P-band synthetic aperture radar tomography to tropical forest biomass. IEEE Trans. Geosci. Remote Sens. 2013, 52, 967–979. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C.; Zhao, B.; Yang, Z.; Liu, Y.; Zhang, S.; Qi, W. Deformation Slope Extraction and Influencing Factor Analysis Using LT-1 Satellite Data: A Case Study of Chongqing and Surrounding Areas, China. Remote Sens. 2025, 17, 156. [Google Scholar] [CrossRef]
- Song, J.; Liu, X.; Adingo, S.; Guo, Y.; Li, Q. A Comparative Analysis of Remote Sensing Estimation of Aboveground Biomass in Boreal Forests Using Machine Learning Modeling and Environmental Data. Sustainability (2071–1050) 2024, 16, 7232. [Google Scholar] [CrossRef]
- Wei, Y.Z. Inversion of Forest Biomass by Machine Learning Method Based on SAR Images. Master’s Thesis, Chang’an University, Xi’an, China, 2020. [Google Scholar]
- Behera, D.; Kumar, V.A.; Rao, J.P.; Padal, S.B.; Ayyappan, N.; Reddy, C.S. Estimating aboveground biomass of a regional forest landscape by integrating textural and spectral variables of Sentinel-2 along with ancillary data. J. Indian Soc. Remote Sens. 2024, 52, 917–929. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, J.; Dai, Y.; Xie, R.; Zhu, Z.; Sun, M.; Zhao, K. Influence of BRDF Models and Solar Zenith Angles on Forest Above-Ground Biomass Derived from MODIS Multi-Angular Indices. Forests 2024, 15, 541. [Google Scholar] [CrossRef]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Mallinis, G. Vegetation biomass estimation with remote sensing: Focus on forest and other wooded land over the Mediterranean ecosystem. Int. J. Remote Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef]
- Fu, Y.; Li, R.; Zhu, Z.; Xue, Y.; Ding, H.; Wang, X.; Xia, W. SCARF: A new algorithm for continuous prediction of biomass dynamics using machine learning and Landsat time series. Remote Sens. Environ. 2024, 314, 114348. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Bich, N.T.N.; Nghia, N.H.; Lan, T.T.N.; Nguyen, T.T.H.; Dang, H.V. Estimation of changes in above-ground biomass and carbon stocks of mangrove forests using sentinel-2a in Thai Thuy district, Thai Binh province during 2015–2019. Vietnam J. Sci. Technol. 2022, 60, 73–91. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289. [Google Scholar] [CrossRef]
- Huang, T.; Ou, G.; Wu, Y.; Zhang, X.; Liu, Z.; Xu, H.; Xu, C. Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data. Remote Sens. 2023, 15, 3550. [Google Scholar] [CrossRef]
- Imran, A.B.; Ahmed, S. Potential of Landsat-8 spectral indices to estimate forest biomass. Int. J. Hum. Cap. Urban Manag. 2018, 3, 303. [Google Scholar]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of remote sensing-based methods for forest aboveground biomass estimation: Progress, challenges, and prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Saarela, S.; Wästlund, A.; Holmström, E.; Mensah, A.A.; Holm, S.; Nilsson, M.; Ståhl, G. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors. For. Ecosyst. 2020, 7, 43. [Google Scholar] [CrossRef]
- Qin, L.; Meng, S.; Zhou, G.; Liu, Q.; Xu, Z. Uncertainties in above ground tree biomass estimation. J. For. Res. 2021, 32, 1989–2000. [Google Scholar] [CrossRef]
- Fareed, N.; Numata, I. Evaluating the impact of field-measured tree height errors correction on aboveground biomass modeling using airborne laser scanning and GEDI datasets in Brazilian Amazonia. Trees For. People 2025, 19, 100751. [Google Scholar] [CrossRef]
- Shettles, M.; Hilker, T.; Temesgen, H. Examination of uncertainty in per unit area estimates of aboveground biomass using terrestrial LiDAR and ground data. Can. J. For. Res. 2016, 46, 706–715. [Google Scholar] [CrossRef]
- Berger, A.; Gschwantner, T.; McRoberts, R.E.; Schadauer, K. Effects of measurement errors on individual tree stem volume estimates for the Austrian National Forest Inventory. For. Sci. 2014, 60, 14–24. [Google Scholar] [CrossRef]
- Breidenbach, J.; Antón-Fernández, C.; Petersson, H.; McRoberts, R.E.; Astrup, R. Quantifying the model-related variability of biomass stock and change estimates in the Norwegian National Forest Inventory. For. Sci. 2014, 60, 25–33. [Google Scholar] [CrossRef]
- Chen, Q.; Laurin, G.V.; Valentini, R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sens. Environ. 2015, 160, 134–143. [Google Scholar] [CrossRef]
- Silveira, E.M.; Santo, F.D.E.; Wulder, M.A.; Júnior, F.W.A.; Carvalho, M.C.; Mello, C.R.; Scolforo, J.R. Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. For. Ecol. Manag. 2019, 445, 96–109. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Zhang, M.; Wang, Z.; Gu, Z.; Wu, Y.; Lu, Z. Uncertainty analysis of remote sensing pretreatment for biomass estimation on Landsat OLI and Landsat ETM+. ISPRS Int. J. Geo-Inf. 2020, 9, 48. [Google Scholar] [CrossRef]
- Gregoire, T.G.; Næsset, E.; McRoberts, R.E.; Ståhl, G.; Andersen, H.E.; Gobakken, T.; Nelson, R. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sens. Environ. 2016, 173, 98–108. [Google Scholar] [CrossRef]
- Coleman, K.; Müller, J.; Kuenzer, C. Remote Sensing of Forests in Bavaria: A Review. Remote Sens. 2024, 16, 1805. [Google Scholar] [CrossRef]
- GB/T 43648-2024; Stump Biomass Modeling and Carbon Measurement Parameters for Major Tree Species. State Administration of Market Supervision and Administration (SACMA) and Standardization Administration of PRC (SAC): Beijing, China, 2015.
- Tang, X.; Fehrmann, L.; Guan, F.; Forrester, D.I.; Guisasola, R.; Pérez-Cruzado, C.; Kleinn, C. A generalized algebraic difference approach allows an improved estimation of aboveground biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla forests. Ann. For. Sci. 2017, 74, 12. [Google Scholar] [CrossRef]
- Song, R. Vegetation coverage evaluation of Yangtze River great protection based on envi software—A case study of Maanshan City. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1744, p. 032208. [Google Scholar]
- Carleer, A.P.; Wolff, E. Urban land cover multi-level region-based classification of VHR data by selecting relevant features. Int. J. Remote Sens. 2006, 27, 1035–1051. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Wang, G.; Guo, F.; Li, Z.; Liu, B. Multi-Scale LBP texture feature learning network for remote sensing interpretation of land desertification. Remote Sens. 2022, 14, 3486. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D.; Li, R. Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci. Remote Sens. 2013, 52, 16–24. [Google Scholar] [CrossRef]
- Duan, M.; Song, X.; Liu, X.; Cui, D.; Zhang, X. Mapping the soil types combining multi-temporal remote sensing data with texture features. Comput. Electron. Agric. 2022, 200, 107230. [Google Scholar] [CrossRef]
- Wei, H.L.; Qi, Y.J. Analysis of grassland degradation of the Tibet Plateau and human driving forces based on remote sensing. Pratacultural Sci. 2016, 33, 2576–2586. [Google Scholar]
- Zhang, C.; Huang, C.; Li, H.; Liu, Q.; Li, J.; Bridhikitti, A.; Liu, G. Effect of textural features in remote sensed data on rubber plantation extraction at different levels of spatial resolution. Forests 2020, 11, 399. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, L.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 1189–1232. [Google Scholar] [CrossRef]
- Lawrence, R.; Bunn, A.; Powell, S.; Zambon, M. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens. Environ. 2004, 90, 331–336. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sun, J.; Zhong, G.; Huang, K.; Dong, J. Banzhaf random forests: Cooperative game theory based random forests with consistency. Neural Netw. 2018, 106, 20–29. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Zheng, X.; Peng, H.; Xin, J.; Zhang, B. Short-term prediction of groundwater level using improved random forest regression with a combination of random features. Appl. Water Sci. 2018, 8, 125. [Google Scholar] [CrossRef]
- Qin, L.H.; Zhang, M.Z.; Zhong, S.H.; Yu, X.H. Model uncertainty analysis in forest biomass estimation. J. Ecol. 2017, 37, 79127919. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, J.M.; Schwartz, J.; Dockery, D.; Cohen, A. Exposure measurement error in time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 2000, 108, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bi, S.; Hao, S.; Cui, Y. Aboveground biomass estimation in forests with random forest and Monte Carlo-based uncertainty analysis. Ecol. Indic. 2022, 142, 109246. [Google Scholar] [CrossRef]
- Huang, Y.J.; Zhang, J.L.; Hu, Y.P.; Chen, T. Uncertainty analysis of remote sensing for aboveground biomass estimation of Pinus densata. J. Zhejiang Agric. For. Univ. 2022, 39, 531–539. [Google Scholar]
- Wang, K.R.; Shu, Q.T.; Zhao, H.Y.; Tan, D.H.; Yuan, Z.J. Modeling uncertainty of single-timber aboveground biomass of Pinus densata. J. Southwest For. Univ. 2021, 41, 100–106. [Google Scholar]
- Anees, S.A.; Mehmood, K.; Khan, W.R.; Sajjad, M.; Alahmadi, T.A.; Alharbi, S.A.; Luo, M. Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region. Ecol. Indic. 2024, 82, 102732. [Google Scholar] [CrossRef]
- Zhang, S.H.; He, L.; Duan, J.Z.; Zang, S.L.; Yang, T.C.; Schulthess, U.R.S.; Feng, W. Aboveground wheat biomass estimation from a low-altitude UAV platform based on multimodal remote sensing data fusion with the introduction of terrain factors. Precis. Agric. 2024, 25, 119–145. [Google Scholar] [CrossRef]
- Hosseiny, B.; Mahdianpari, M.; Hemati, M.; Radman, A.; Mohammadimanesh, F.; Chanussot, J. Beyond supervised learning in remote sensing: A systematic review of deep learning approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1035–1052. [Google Scholar] [CrossRef]
- Suwanlee, S.R.; Pinasu, D.; Som-ard, J.; Borgogno-Mondino, E.; Sarvia, F. Estimating sugarcane aboveground biomass and carbon stock using the combined time series of sentinel data with machine learning algorithms. Remote Sens. 2024, 16, 750. [Google Scholar] [CrossRef]
- Zhuo, W.; Wu, N.; Shi, R.; Liu, P.; Zhang, C.; Fu, X.; Cui, Y. Aboveground biomass retrieval of wetland vegetation at the species level using UAV hyperspectral imagery and machine learning. Ecol. Indic. 2024, 166, 112365. [Google Scholar] [CrossRef]
- Mayamanikandan, T.; Reddy, S.; Fararoda, R.; Thumaty, K.C.; Praveen, M.S.S.; Rajashekar, G.; Gummapu, J. Quantifying the influence of plot-level uncertainty in above ground biomass up scaling using remote sensing data in central Indian dry deciduous forest. Geocarto Int. 2022, 37, 3489–3503. [Google Scholar] [CrossRef]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Persson, H.J.; Ekström, M.; Ståhl, G. Quantify and account for field reference errors in forest remote sensing studies. Remote Sens. Environ. 2022, 283, 113302. [Google Scholar] [CrossRef]
- Liu, Y.F.; Li, Z.J.; Wu, Y.; Lu, C.; Ou, G.L. Remote sensing estimation of above-ground biomass of oak and Simao pine forests in Xishuangbanna. West. For. Sci. 2023, 52, 147–155. [Google Scholar]
Survey Year | ID | Acquisition Date | Cloudy/% |
---|---|---|---|
2023 | LC08_L2SP_121044_20231118_20231122_02_T1 | 18 November 2023 | 0.02% |
LC08_L2SP_121043_20231118_20231122_02_T1 | 18 November 2023 | 0.02% | |
LC08_L2SP_122044_20231125_20231129_02_T1 | 25 November 2023 | 1.28% | |
LC08_L2SP_122043_20231227_20240104_02_T1 | 27 December 2023 | 4.76% |
Sensor | Feature Type | Feature Name | Definition |
---|---|---|---|
Landsat 8 | Spectral bands | B2, B3, B4, B5, B6, B7 | Blue, Green, Red, NIR, SWIR1, SWIR2 |
Information enhancement | PCA1, PCA2, PCA3 | Principal component analysis [45] | |
Vegetation indices | DVI | NIR-Red | |
RVI | NIR/Red | ||
NDVI | (NIR − Red)/(NIR + Red) | ||
NDVI2 | (NIR − Green)/(NIR + Green) | ||
LCI | (NIR + Red)/2 | ||
SAVI | 1.5 × (NIR − Red)/8 × (NIR + Red + 0.5) | ||
EVI | 2.5 × ((NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1)) | ||
Textural features | Contrast (CON), Dissimilarity (DIS), Angular second moment (ASM), Entropy (ENT), Variance (VAR), Correlation (COR), Homogeneity (HOM), Mean (ME) | Gray level co-occurrence matrix [46] |
Model | Parameter Error/% | Residual Variation Error/% | Plot Scale Uncertainty/% |
---|---|---|---|
4.81 | 4.62 | 3.23 |
Model | Uncertainty of Remote Sensing-Based Estimation Models/% | Uncertainties at the Plot Scale | Total Uncertainty/% | ||
---|---|---|---|---|---|
Model Parameter Errors/% | Model Residual Variance/% | Uncertainty at the Plot Scale/% | |||
KNN | 14.88 | 4.81 | 4.62 | 3.23 | 15.22 |
GBRT | 6.3 | 7.08 | |||
RF | 5.93 | 6.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Fu, L.; Qiu, B.; Xie, D.; Wu, Z.; Lei, Y.; Ye, J.; Wang, Q. Uncertainty Analysis of Remote Sensing Estimation of Chinese Fir (Cunninghamia lanceolata) Aboveground Biomass in Southern China. Forests 2025, 16, 230. https://doi.org/10.3390/f16020230
Hu Y, Fu L, Qiu B, Xie D, Wu Z, Lei Y, Ye J, Wang Q. Uncertainty Analysis of Remote Sensing Estimation of Chinese Fir (Cunninghamia lanceolata) Aboveground Biomass in Southern China. Forests. 2025; 16(2):230. https://doi.org/10.3390/f16020230
Chicago/Turabian StyleHu, Yaopeng, Liyong Fu, Bo Qiu, Dongbo Xie, Zheyuan Wu, Yuancai Lei, Jinsheng Ye, and Qiulai Wang. 2025. "Uncertainty Analysis of Remote Sensing Estimation of Chinese Fir (Cunninghamia lanceolata) Aboveground Biomass in Southern China" Forests 16, no. 2: 230. https://doi.org/10.3390/f16020230
APA StyleHu, Y., Fu, L., Qiu, B., Xie, D., Wu, Z., Lei, Y., Ye, J., & Wang, Q. (2025). Uncertainty Analysis of Remote Sensing Estimation of Chinese Fir (Cunninghamia lanceolata) Aboveground Biomass in Southern China. Forests, 16(2), 230. https://doi.org/10.3390/f16020230