Phenotypic Variation in Cone Scales and Seeds as Drivers of Seedling Germination Dynamics of Co-Occurring Cedar and Fir Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Female Cone of Conifers and the Cone Scale Morphology
2.2. Study Area, Tree Species, and Field Sampling
2.3. Seed Weight, Seed Germination, and Seedling Cotyledons Emergence and Growth
2.4. Statistical Analysis and Modeling
2.4.1. Q1. How Do Cone Scale Dimensions, Seed Weight, and Growth Rate Vary Between Species and Populations?
2.4.2. Q2. What Is the Relationship Between Cone Scale Dimensions and Seed Weight and Germination? What Is More Important: Centrality or Variability?
2.4.3. Q3. How Does Seed Weight Determine Seedling Development and Growth Rate?
3. Results
3.1. Cone Scales, Seed Weight, and Growth Rate
3.2. Cone Scale Area and Seed Weight Relationship
3.3. Structural Equation Modeling of Seed Weight, Germination, and Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; El-Kassaby, Y.A.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.; Aitken, S.N.; Alía, R.; González-Martínez, S.C.; Hänninen, H.; Kremer, A.; Lefèvre, F.; Lenormand, T.; Yeaman, S.; Whetten, R.W.; et al. Potential for evolutionary responses to climate change—Evidence from tree populations. Glob. Change Biol. 2013, 19, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Benito-Garzón, M.; Ruiz-Benito, P.; Zavala, M.A. Including tree growth and mortality into species distribution. Glob. Ecol. Biogeogr. 2013, 22, 1141–1151. [Google Scholar] [CrossRef]
- Matesanz, S.; Ramírez-Valiente, J.A. A review and meta-analysis of intraspecific differences in phenotypic plasticity: Implications to forecast plant responses to climate change. Glob. Ecol. Biogeogr. 2019, 28, 1682–1694. [Google Scholar] [CrossRef]
- Savolainen, O.; Pyhäjärvi, T.; Knürr, T. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 595–619. [Google Scholar] [CrossRef]
- Gienapp, P.; Teplitsky, C.; Alho, J.; Mills, J.A.; Merilä, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178. [Google Scholar] [CrossRef]
- Matesanz, S.; Gianoli, E.; Valladares, F. Global change and the evolution of phenotypic plasticity in plants. Ann. N. Y. Acad. Sci. 2010, 1206, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Jump, A.S.; Peñuelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef]
- Valladares, F.; Wright, S.J.; Lasso, E.; Kitajima, K.; Pearcy, R.W. Plastic phenotypic response to light of 16 congeneric shrubs from Panamanian rainforest. Ecology 2000, 81, 1925–1936. [Google Scholar] [CrossRef]
- Ramírez-Valiente, J.A.; Sanchez-Gomez, D.; Aranda, I.; Valladares, F. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiol. 2010, 30, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Fordham, D.A. Identifying species traits that predict vulnerability to climate change. Camb. Prism. Extinction 2024, 2, e21. [Google Scholar] [CrossRef]
- Castro, J. Seed mass versus seedling performance in Scots pine: A maternally dependent trait. New Phytol. 1999, 144, 153–161. [Google Scholar] [CrossRef]
- Castro, J. Short Delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Ann. Bot. 2006, 98, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno-Palomar, N.; Revuelta-Eugercios, B.A.; Zavala, M.A.; Alía, R.; González-Martínez, S.C. The role of population origin and microenvironment in seedling emergence and early survival in mediterranean maritime pine (Pinus pinaster Aiton). PLoS ONE 2014, 9, e109132. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Zamora, R. Alleviation of summer drought boosts establishment success of Pinus sylvestris in a mediterranean mountain: An experimental approach. Plant Ecol. 2005, 181, 191–202. [Google Scholar] [CrossRef]
- Vitasse, Y.; Hoch, G.; Randin, C.F.; Lenz, A.; Kollas, C.; Scheepens, J.F.; Körner, C. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 2013, 171, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Cavender-Bares, J.; Bazzaz, F.A. Changes in drought response strategies with ontogeny in Quercus rubra: Implications for scaling from seedlings to mature trees. Oecologia 2000, 124, 8–18. [Google Scholar] [CrossRef]
- Jones, R.H.; Allen, B.P.; Sharitz, R.R. Why do early-emerging tree seedlings have survival advantages? A test using Acer rubrum (Aceraceae). Am. J. Bot. 1997, 84, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Verdú, M.; Traveset, A. Early emergence enhances plant fitness: A phylogenetically controlled meta-analysis. Ecology 2005, 86, 1385–1394. [Google Scholar] [CrossRef]
- Matziris, D. Variation in growth, flowering and cone production in a clonal seed orchard of aleppo pine grown in Greece. Silvae Genet. 1997, 46, 224–228. [Google Scholar] [CrossRef]
- Prescher, F.; Lindgren, D.; Almqvist, C.; Kroon, J.; Lestander, T.; Mullin, T.J. Variation in female fertility in mature Pinus sylvestris clonal seed orchards. Scand. J. For. Res. 2007, 22, 280–289. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 2005, 166, 49–60. [Google Scholar] [CrossRef]
- Valladares, F.; Gianoli, E.; Gómez, J.M. Ecological limits to plant phenotypic plasticity. New Phytol. 2007, 146, 749–763. [Google Scholar] [CrossRef]
- Arista, M.; Talavera, M.; Herrera, J. Biología del Pinsapo; de Medio Ambiente, C., de Andalucía, J., Eds.; Junta de Andalucia: Sevilla, Spain, 1997; ISBN 84-89650-10-1. [Google Scholar]
- Su, T.; Liu, Y.; Jacques, F.M.; Huang, Y.; Xing, Y.; Zhou, Z. The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China. Quat. Res. 2013, 80, 316–325. [Google Scholar] [CrossRef]
- Ben-Said, M.; Linares, J.C.; Carreira, J.A.; Taïqui, L. Spatial patterns and species coexistence in mixed Abies marocana–Cedrus atlantica forest in Talassemtane National Park. For. Ecol. Manag. 2022, 506, 119967. [Google Scholar] [CrossRef]
- Terrab, A.; Talavera, S.; Arista, M.; Paun, O.; Stuessy, T.F.; Tremetsberger, K. Genetic diversity and geographic structure at chloroplast microsatellites (cpSSRs) in endangered west Mediterranean firs (Abies spp., Pinaceae). Taxon 2007, 56, 409–416. [Google Scholar] [CrossRef]
- Balao, F.; Lorenzo, M.T.; Sánchez-Robles, J.M.; Paun, O.; García-Castaño, J.L.; Terrab, A. Early diversification and permeable species boundaries in the Mediterranean firs. Ann. Bot. 2020, 125, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Ben-Said, M. The taxonomy of Moroccan fir Abies marocana (Pinaceae): Conceptual clarifications from phylogenetic studies. Mediterr. Bot. 2022, 43, e71201. [Google Scholar] [CrossRef]
- Messier, J.; McGill, B.J.; Lechowicz, M.J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 2010, 13, 838–848. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S. In Statistics and Computing; Springer Nature: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-150; The R Foundation: Vienna, Austria, 2020; Available online: https://cran.r-project.org/web/packages/nlme/ (accessed on 3 June 2024).
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 3 June 2024).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference, R pachage version 1.43.17; The R Foundation: Vienna, Austria, 2020; Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 3 June 2024).
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Westoby, M.; Jurado, E.; Leishman, M.R. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 1992, 7, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Surles, S.E.; White, T.J.; Hodge, G.R.; Duryea, M. Relationships among seed weight components, seedling growth traits, and predicted field breeding values in slash pine. Can. J. For. Res. 1993, 23, 1550–1556. [Google Scholar] [CrossRef]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The evolutionary ecology of seed size. In Seeds: The Ecology of Regeneration in Plant Communities; CABI Publishing: Wallingford, UK, 2000; pp. 31–57. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Tautenhahn, S.; Werner, G.D.A.; Aakala, T.; Abedi, M.; et al. TRY plant trait database—Enhanced coverage and open access. Glob. Change Biol. 2019, 26, 119–188. [Google Scholar] [CrossRef]
- Estrada, A.; Meireles, C.; Morales-Castilla, I.; Poschlod, P.; Vieites, D.; Araújo, M.B.; Early, R. Species’ intrinsic traits inform their range limitations and vulnerability under environmental change. Glob. Ecol. Biogeogr. 2015, 24, 849–858. [Google Scholar] [CrossRef]
- Andrew, S.C.; Gallagher, R.V.; Wright, I.J.; Mokany, K. Assessing the vulnerability of plant functional trait strategies to climate change. Glob. Ecol. Biogeogr. 2022, 31, 1194–1206. [Google Scholar] [CrossRef]
- Schleuning, M.; Neuschulz, E.L.; Albrecht, J.; Bender, I.M.; Bowler, D.E.; Dehling, D.M.; Fritz, S.A.; Hof, C.; Mueller, T.; Nowak, L.; et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 2020, 35, 319–328. [Google Scholar] [CrossRef]
- Csilléry, K.; Ovaskainen, O.; Sperisen, C.; Buchmann, N.; Widmer, A.; Gugerli, F. Adaptation to local climate in multi-trait space: Evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity 2020, 124, 77–92. [Google Scholar] [CrossRef]
- Méndez-Cea, B.; García-García, I.; Sánchez-Salguero, R.; Lechuga, V.; Gallego, F.J.; Linares, J.C. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. Plants 2023, 12, 873. [Google Scholar] [CrossRef] [PubMed]
- Zas, R.; Cendán, C.; Sampedro, L. Mediation of seed provisioning in the transmission of environmental maternal effects in Maritime pine (Pinus pinaster Aiton). Heredity 2013, 111, 248–255. [Google Scholar] [CrossRef]
- Matías, L.; Jump, A.S. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 2014, 65, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Tíscar, P.A.; Linares, J.C. Large-scale regeneration patterns of Pinus nigra subsp. salzmannii: Poor evidence of increasing facilitation across a drought gradient. Forests 2014, 5, 1–20. [Google Scholar] [CrossRef]
- Seiwa, K. Effects of seed size and emergence time on tree seedling establishment: Importance of developmental constraints. Oecologia 2000, 123, 208–215. [Google Scholar] [CrossRef]
- Wennström, U.; Bergsten, U.; Nilsson, J. Effects of seed weight and seed type on early seedling growth of Pinus sylvestris under harsh and optimal conditions. Scand. J. For. Res. 2002, 17, 118–130. [Google Scholar] [CrossRef]
- Ramírez-Valiente, J.A.; Solé-Medina, A.; Pyhäjärvi, T.; Savolainen, O.; Cervantes, S.; Kesälahti, R.; Kujala, S.T.; Kumpula, T.; Heer, K.; Opgenoorth, L.; et al. Selection patterns on early-life phenotypic traits in Pinus sylvestris are associated with precipitation and temperature along a climatic gradient in Europe. New Phytol. 2020, 229, 3009–3025. [Google Scholar] [CrossRef]
- Pawłowski, T.A.; Suszka, J.; Mucha, J.; Zadworny, M.; Alipour, S.; Kurpisz, B.; Chmielarz, P.; Jagodziński, A.M.; Chmura, D.J. Climate legacy in seed and seedling traits of European beech populations. Front. Plant Sci. 2024, 15, 1355328. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.; Noland, T.L.; Morneault, A.E. The effects of seed mass on germination, seedling emergence, and early seedling growth of eastern white pine (Pinus strobus L.). New For. 2006, 32, 33–49. [Google Scholar] [CrossRef]
- Bladé, C.; Vallejo, V.R. Seed mass effects on performance of Pinus halepensis Mill. seedlings sown after fire. For. Ecol. Manag. 2008, 255, 2362–2372. [Google Scholar] [CrossRef]
- Tíscar, P.A.; Lucas, M. Seed mass variation, germination time and seedling performance in a population of Pinus nigra subsp. salzamannii. For. Syst. 2010, 19, 344–353. [Google Scholar] [CrossRef]
- Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 1987, 18, 209–235. [Google Scholar] [CrossRef]
- Price, T.D.; Qvarnstrom, A.; Irwin, D.E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. Ser. B 2003, 270, 14331440. [Google Scholar] [CrossRef] [PubMed]
- Pigliucci, M.; Murren, C.J.; Schlichting, C.D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 2006, 209, 23622367. [Google Scholar] [CrossRef] [PubMed]
- Trueba, S.; Muñoz, N.G.; Burlett, R.; Lamarque, L.J.; Gibon, Y.; Gimeno, T.E.; Kaisermann, A.; Benard, C.; Lemaire, C.; Torres-Ruiz, J.M.; et al. The rates of starch depletion and hydraulic failure both play a role in drought-induced seedling mortality. Ann. For. Sci. 2024, 81, 27. [Google Scholar] [CrossRef]
- Kelly, M.G.; Levin, D.A. Fitness consequences and heritability aspects of emergence date in Phlox drummondii. J. Ecol. 1997, 85, 755–766. [Google Scholar] [CrossRef]
- Herrera, C.M. Plant phenotypes as distributions: Johannsen’s beans revisited. Am. Nat. 2024, 203, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Pélabon, C.; De Giorgi, F.; Opedal, Ø.H.; Bolstad, G.H.; Raunsgard, A.; Armbruster, W.S. Is There More to Within-plant Variation in Seed Size than Developmental Noise? Evol. Biol. 2021, 48, 366–377. [Google Scholar] [CrossRef]
- Diggle, P.K. Architectural effects and the interpretation of patterns of fruit and seed development. Annu. Rev. Ecol. Evol. Syst. 1995, 26, 531–552. [Google Scholar] [CrossRef]
- Herrera, C.M. Multiplicity in Unity: Plant Subindividual Variation and Interactions with Animals; Chicago University Press: Chicago, IL, USA, 2009. [Google Scholar] [CrossRef]
Species | Cedrus atlantica | Abies marocana | ||
---|---|---|---|---|
Population | CT | CZ | AT | AZ |
Trees | 4 | 5 | 5 | 6 |
Mean DBH (cm) | 48.67 | 50.05 | 40.78 | 19.69 |
Mean height (m) | 7.75 | 10.27 | 8.32 | 6.15 |
Cones | 5 (10 *) | 5 | 5 | 5 |
Cone scales per cone | 10–14 ** (total 330) | 10–12 ** (total 328) | 9–11 ** (total 322) | 8–14 ** (total 389) |
Measured seeds | 200 | 200 | 200 | 240 |
Sown seeds | 100 | 100 | 100 | 120 |
Seed dry weight (mg; mean ± standard error) | 79.42 ± 0.92 | 66.11 ± 4.89 | 89.40 ± 7.97 | 80.88 ± 8.58 |
Germination (days since sow date) | 30.93 ± 14.58, n = 73 | 26.08 ± 12.50, n = 87 | 31.34 ± 8.82, n = 69 | 30.23 ± 8.81, n = 82 |
Cotyledons emergence (days since germination date) | 4.13 ± 0.40, n = 71 | 5.22 ± 0.36, n = 87 | 6.05 ± 0.28, n = 65 | 6.41 ± 0.34, n = 78 |
Seedling height (mm) after 12 weeks (mean ± standard error) | 83.62 ± 4.87, n = 71 | 89.67 ± 4.51, n = 87 | 38.57 ± 1.30, n = 65 | 33.33 ± 0.82, n = 78 |
Variable (Units) | Abbreviation |
---|---|
Seed weight (mg) | Sw |
Germination rate (%) | Ger_rat |
Germination time (days) | Ger_tim |
Cotyledons emergence (days) | Cot_tim |
Seedling size (cm) | Sling_siz |
Growth rate (mm day−1) | G_rat |
Cone scale area (cm2) | Scal_are |
Cone scale perimeter (cm) | Scal_per |
Cone scale diameter_max (cm) | Scal_dmax |
Cone scale diameter_min (cm) | Scal_dmin |
Cone scale area CV (cm2) | Scal_areCV |
Cone scale perimeter CV (cm) | Scal_perCV |
Cone scale diameter_max CV (cm) | Scal_dmax CV |
Cone scale diameter_min CV (cm) | Scal_dminCV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Ríos, M.; Gazol, A.; Seco, J.I.; Linares, J.C. Phenotypic Variation in Cone Scales and Seeds as Drivers of Seedling Germination Dynamics of Co-Occurring Cedar and Fir Species. Forests 2025, 16, 252. https://doi.org/10.3390/f16020252
Trujillo-Ríos M, Gazol A, Seco JI, Linares JC. Phenotypic Variation in Cone Scales and Seeds as Drivers of Seedling Germination Dynamics of Co-Occurring Cedar and Fir Species. Forests. 2025; 16(2):252. https://doi.org/10.3390/f16020252
Chicago/Turabian StyleTrujillo-Ríos, María, Antonio Gazol, José Ignacio Seco, and Juan Carlos Linares. 2025. "Phenotypic Variation in Cone Scales and Seeds as Drivers of Seedling Germination Dynamics of Co-Occurring Cedar and Fir Species" Forests 16, no. 2: 252. https://doi.org/10.3390/f16020252
APA StyleTrujillo-Ríos, M., Gazol, A., Seco, J. I., & Linares, J. C. (2025). Phenotypic Variation in Cone Scales and Seeds as Drivers of Seedling Germination Dynamics of Co-Occurring Cedar and Fir Species. Forests, 16(2), 252. https://doi.org/10.3390/f16020252