Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP) to Enable Screening of Fungi for Biocontrol Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Maintenance of Fungal Cultures
2.2. Plasmid and Propagation
2.3. Protoplast Preparation and Transformation of C. minus
2.4. DNA Extraction
2.5. PCR Amplification of the gfp Gene from the Transformant
2.6. Southern Hybridization
2.7. Comparison of Growth Rates
2.8. Screening Potential Biocontrol Strains
3. Results
3.1. C. minus Protoplast and Transformation Yield, and GFP Expression
3.2. Molecular Characterization of FJT95
3.3. Growth of FJT95 Compared to C. minus Wild Type
3.4. Screening Fungal Strains for Antagonistic Activity towards C. minus FJT95
species and strain | by C. minus 1 | Loss of GFP fluorescence in C. minus 2 | |||
---|---|---|---|---|---|
PDA 3 | PMMG 4 | PDA | PMMG | ||
1 % Inhibition of growth of FBC strains by C. minus (produces uncharacterized metabolites), calculated from radial growth measurements toward and away from C. minus (data not shown). Values are the mean of four replicate assays ° standard deviation. Text in bold indicates no significant difference (p ° 0.05) between growth towards and away from C. minus. 2 ++: no loss of GFP fluorescence (indicates no antagonistic activity); +: partial loss GFP fluorescence; -: complete loss of GFP fluorescence (indicates antagonistic activity); +/−: equal number of + and – assays observed. Typical results from four replicate assays. 3 PDA: Potato dextrose agar (see Section 2.1). 4 PMMG: Pine minimal medium with glucose (see Section 2.1). | |||||
T. atroviride | FBC2 | 11.9 ± 7.7 | 12.3 ± 8.4 | + | +/− |
T. atroviride | FBC4 | 13.9 ± 3.9 | 6.3 ± 5.0 | - | - |
T. hamatum | FBC6 | 33.4 ± 10.4 | 44.2 ± 3.5 | - | +/− |
T. atroviride | FBC9 | 10.5 ± 7.0 | 13.5 ± 4.0 | - | +/− |
T. atroviride | FBC10 | 13.0 ± 0.0 | 15.5 ± 4.2 | + | - |
T. atroviride | FBC11 | 15.8 ± 5.6 | 26.8 ± 2.2 | ++ | - |
T. atroviride | FBC12 | 14.7 ± 4.3 | 16.8 ± 4.9 | + | - |
4. Discussion
Acknowledgements
References
- DiCosmo, F.; Peredo, H.; Minter, D.W. Cyclaneusma gen. nov., Naemacyclus and Lasiostictis, a nomenclatural problem resolved. Eur. J. For. Path. 1983, 13, 206–212. [Google Scholar] [CrossRef]
- Bulman, L.S.; Gadgil, P.D. Cyclaneusma needle-cast in New Zealand,Forest Research Bulletin No. 222; 2001; Forest Research: Rotorua, New Zealand. [Google Scholar]
- Gadgil, P.D. Cyclaneusma (Naemacyclus) needle-cast of Pinus radiata in New Zealand. 1. Biology of Cyclaneusma minus. New Zeal. J. For. Sci. 1984, 14, 179–196. [Google Scholar]
- Gernandt, D.S.; Platt, J.L.; Stone, J.K.; Spatafora, J.W.; Holst-Jensen, A.; Hamelin, R.C.; Kohn, L.M. Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences. Mycologia 2001, 93, 915–933. [Google Scholar] [CrossRef]
- Lantz, H.; Johnston, P.R.; Park, D.; Minter, D.W. Molecular phylogeny reveals a core clade of Rhytismatales. Mycologia 2011, 103, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Kistler, B.R.; Merrill, W. Etiology, symptomology, epidemiology and control of Naemacyclus needle-cast of Scots pine. Phytopathology 1977, 68, 267–271. [Google Scholar]
- Merrill, W.; Wenner, N.G. Cyclaneusma needle-cast and needle retention in Scots Pine. Plant Dis. 1996, 80, 294–298. [Google Scholar] [CrossRef]
- Helander, M.L.; Sieber, T.N.; Petrini, O.; Neuvonen, S. Endophytic fungi in Scots Pine needles—Spatial variation and consequences of simulated acid-rain. Can. J. Bot. 1994, 72, 1108–1113. [Google Scholar] [CrossRef]
- Kowalski, T. Fungi in living symptomless needles of Pinus sylvestris with respect to some observed disease processes. J. Phytopathol. 1993, 139, 129–145. [Google Scholar] [CrossRef]
- Sieber, T.N.; Rys, J.; Holdenrieder, O. Mycobiota in symptomless needles of Pinus mugo ssp. uncinata. Mycol. Res. 1999, 103, 306–310. [Google Scholar] [CrossRef]
- Drenkhan, R.; Hanso, M. Recent invasion of foliage fungi of pines (Pinus spp.) to the Northern Baltics. For. Stud. 2009, 51, 49–64. [Google Scholar]
- Crous, P.W.; Wingfield, M.J.; Swart, W.J. Shoot and needle diseases of Pinus spp. in South Africa. South African For. J. 1990, 60–66. [Google Scholar]
- Bulman, L. Quantifying pest impact and spread: Cyclaneusma needle-cas. Forest Biosecurity and Protection Annual Science Report; Scion: Rotorua, New Zealand, 2009; pp. 60–66. Available online: http://www.scionresearch.com/general/science-publications/science-publications/technical-reports/for accessed on 20 November 2011.
- Gadgil, P.D. Symptoms and pathogenicity. In Cyclaneusma needle-cast in New Zealand,Forest Research Bulletin No. 222; Gadgil, P.D., Bulman, L.S., Eds.; 2001; Forest Research: Rotorua, New Zealand. [Google Scholar]
- Bulman, L. Scion (New Zealand Forest Research Institute Ltd), Rotorua, New Zealand. Personal Communication, 2011. [Google Scholar]
- Dick, M.A.; Somerville, J.G.; Gadgil, P.D. Variability in the fungal population. In Cyclaneusma needle-cast in New Zealand,Forest Research Bulletin No. 222; Gadgil, P.D., Bulman, L.S., Eds.; 2001; pp. 12–19. Forest Research: Rotorua, New Zealand. [Google Scholar]
- Glen, M.; Prihatini, I.; Smith, T.; Wardlaw, T.; Mohammed, C. Spring Needlecast in Tasmania—Fungal Communities and Environmental Factors. Presented at ACPP APPS 2011; New Frontiers in Plant Pathology for Asia and Oceania: Darwin, Australia; pp. 12–19. Available online: http://www.appsnet.org/Publications/Proceedings/APPS%202011%20Handbook.pdf (accessed on 20 November 2011).
- Lorang, J.M.; Tuori, R.P.; Martinez, J.P.; Sawyer, T.L.; Redman, R.S.; Rollins, J.A.; Wolpert, T.J.; Johnson, K.B.; Rodriguez, R.J.; Dickman, M.B.; Ciuffetti, L.M. Green fluorescent protein is lighting up fungal biology. App. Environ. Microbiol. 2001, 67, 1987–1994. [Google Scholar] [CrossRef]
- Larrainzar, E.; O’Gara, F.; Morrissey, J.P. Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu. Rev. Phytopathol. 2005, 59, 257–277. [Google Scholar]
- Lu, Z.X.; Tombolini, R.; Woo, S.; Zeilinger, S.; Lorito, M.; Jansson, J.K. Appl. Environ. Microbiol. 2004, 70, 3073–3081. [CrossRef] [PubMed]
- McLean, T.; Fourie, P.H.; McLeod, A. Reporter gene transformation of the trunk disease pathogen Phaeomoniella chlamydospora and biological control agent Trichoderma harzianum. Australas. Plant. Path. 2009, 38, 153–167. [Google Scholar] [CrossRef]
- Bulman, L.S. Economic impact of Cyclaneusma Needlecast in New Zealand. In Client Report No. 16815; 2009; Scion: Rotorua, New Zealand. [Google Scholar]
- Hood, I.A.; Bulman, L.S. Chemical control. In Cyclaneusma Needle-Cast in New Zealand,Forest Research Bulletin No. 222; Gadgil, P.D., Bulman, L.S., Eds.; 2001; pp. 12–19. Forest Research: Rotorua, New Zealand. [Google Scholar]
- Watt, M.; Rolando, C.; Palmer, D.; Bulman, L.S. Predicting the severity of Cyclaneusma minus on Pinus radiata in New Zealand. Forest Health News. 2011, p. 217. Available online: http://www.scionresearch.com/general/science-publications/science-publications/science-newsletters/f (accessed on 20 November 2011).
- Reglinski, T.; Dick, M. Biocontrol of forest nusery pathogens. New Zeal. J. For. Sci. 2005, 50, 19–26. [Google Scholar]
- Valiente, C.; Diaz, K.; Gacitúa, S.; Martinez, M.; Sanfuentes, E. Control of charcoal root rot in Pinus radiata nurseries with antagonistic bacteria. World J. Microb. Biot. 2008, 24, 557–568. [Google Scholar] [CrossRef]
- Held, B.W.; Thwaites, J.M.; Farrell, R.L.; Blanchette, R.A. Albino strains of Ophiostoma species for biological control of sapstaining fungi. Holzforschung 2003, 57, 237–242. [Google Scholar] [CrossRef]
- Vanneste, J.L.; Hill, R.A.; Kay, S.J.; Farrell, R.L.; Holland, P.T. Biological control of sapstain fungi with natural products and biological control agents: A review of the work carried out in New Zealand. Mycol. Res. 2002, 106, 228–232. [Google Scholar] [CrossRef]
- Schoeman, M.W.; Webber, J.F.; Dickinson, D.J. The development of ideas in biological control applied to forest products. Int. Biodeter. Biodegr. 1999, 43, 109–123. [Google Scholar] [CrossRef]
- Reglinski, T.; Rodenburg, N.; Taylor, J.T.; Northcott, G.L.; Chee, A.A.; Spiers, T.M.; Hill, R.A. Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (Pinus radiata) seedlings. For. Pathol. 2012, 42, 75–78. [Google Scholar] [CrossRef]
- Hill, R.A.; Paderes, D.E.; Wigley, P.J.; Broadwell, A.H. Growth of Pinus radiata seedlings in the nursery with novel microbial formulations. N. Z. Plant Protect. 2007, 60, 305. [Google Scholar]
- Hill, R.A.; Stewart, A.; Hohmann, P.; Braithwaite, M.; Clouston, A.; Minchin, R. Enhancing growth and health of Pinus radiata in New Zealand and Acacia mangium in Malaysia with selected Trichoderma isolates. In Proceedings of the 11th International workshop on Trichoderma and Gliocladium, 13 October 2010; Haifa, Israel.
- Stewart, A.; Wang, W.-Y.; Hill, R.A.; Paderes, D.E. Development of a bio-protection system for Pinus radiata with Trichoderma (ArborGuard™). In Proceedings of the 4th Australasian Soilborne Diseases Symposium, 3–6 September 2006; Queenstown, New Zealand.
- Sanfuentes, E.; González, G.; Zaldúa, S.; Opazo, A.; Moraga-Suazo, P. Evaluation of Trichoderma spp. and Clonostachys spp. strains to control Fusarium circinatum in Pinus radiata seedlings. Chil. J. Agri. Res. 2011, 71, 412–417. [Google Scholar] [CrossRef]
- Bradshaw, R.; Stewart, A.; Schwelm, A.; Yang, S.; McDougal, R. A novel GFP-based approach for screening biocontrol microorganisms in vitro against Dothistroma septosporum. J. Microbiol. Meth. 2011, 87, 32–37. [Google Scholar] [CrossRef]
- Short, J.M.; Fernandez, J.M.; Bullock, W.O. XL1-Blue—A high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques. 1987, 5, 376–378. [Google Scholar]
- Dyer, P.S.; Jones, W.T.; Ganley, R.J.; Bradshaw, R.E. High levels of dothistromin toxin produced by the forest pathogen Dothistroma pini. Mycol. Res. 2000, 104, 325–332. [Google Scholar] [CrossRef]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual1989, 2nd ed; Cold Spring Harbour Laboratory Press: New York, NY, USA. [Google Scholar]
- Scott, D.B.; Forester, N.; Bidlake, A.; Bradshaw, R.E. Transformation of the fungal forest pathogen Dothistroma pini to hygromycin resistance. Mycol. Res. 1997, 101, 1247–1250. [Google Scholar] [CrossRef]
- Doyle, J.L.; Doyle, J.J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
McDougal, R.; Stewart, A.; Bradshaw, R. Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP) to Enable Screening of Fungi for Biocontrol Activity. Forests 2012, 3, 83-94. https://doi.org/10.3390/f3010083
McDougal R, Stewart A, Bradshaw R. Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP) to Enable Screening of Fungi for Biocontrol Activity. Forests. 2012; 3(1):83-94. https://doi.org/10.3390/f3010083
Chicago/Turabian StyleMcDougal, Rebecca, Alison Stewart, and Rosie Bradshaw. 2012. "Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP) to Enable Screening of Fungi for Biocontrol Activity" Forests 3, no. 1: 83-94. https://doi.org/10.3390/f3010083
APA StyleMcDougal, R., Stewart, A., & Bradshaw, R. (2012). Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP) to Enable Screening of Fungi for Biocontrol Activity. Forests, 3(1), 83-94. https://doi.org/10.3390/f3010083