Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
Attribute | Low (n = 14) | Medium (n = 7) | High (n = 11) |
---|---|---|---|
Percent Aspen (% basal area) | 0–31 | 35–57 | 75–100 |
Aspen Basal Area (m2·ha−1) | 0–3.1 | 1.9–5.6 | 3.7–19.5 |
Total Basal Area (m2·ha−1) | 4.9–19.4 | 4.3–11.1 | 4.9–19.5 |
Estimated Fuel Loading (Mg·ha−1) | 54.4–110.7 | 66.1–126.4 | 65.2–76.2 |
Canopy Base Height (m) | 2.4–8.5 | 0.6–4.6 | 1.2–8.2 |
Canopy Bulk Density (kg·m−3) 1 | 0.028–0.221 | 0.027–0.137 | 0.056–0.206 |
Understory Stocking (stems ha-1) | 0–9386 | 556–8756 | 2964–17043 |
2.2. Field Methods
2.3. Fuel Loading
2.4. Fire Weather Data
Variable | 80th Percentile | 90th Percentile | 95th Percentile | 99th Percentile |
---|---|---|---|---|
(Moderate) | (High) | (Severe) | (Extreme) | |
Maximum Temperature (°C) | 27.7 | 28.8 | 30.5 | 32.2 |
1-h Fuel Moisture (%) | 3.3 | 2.5 | 2.1 | 1.4 |
10-h Fuel Moisture (%) | 3.9 | 3.0 | 2.6 | 1.8 |
100-h Fuel Moisture (%) | 6.1 | 5.1 | 4.4 | 3.3 |
1000-h Fuel Moisture (%) | 7.9 | 7.3 | 7.0 | 5.1 |
Herbaceous Fuel Moisture (%) | 3.3 | 2.5 | 2.1 | 1.4 |
Woody Fuel Moisture (%) | 71.6 | 66.9 | 65.3 | 51.3 |
Wind Speed (km·h−1) 1 | 34 | 37 | 40 | 48 |
2.5. Data Analysis
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bartos, D.L. Aspen. In Chapter 3 USDA FS; RMRS-GTR-202; USDA Forest Service: Washington, DC, USA, 2007. [Google Scholar]
- Worrall, J.J.; Egeland, L.; Eager, T.; Mask, R.A.; Johnson, E.W.; Kemp, P.A.; Shepperd, W.D. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For. Ecol. Manag. 2008, 255, 686–696. [Google Scholar] [CrossRef]
- Bartos, D.L.; Campbell, R.B.J. Decline of quaking aspen in the interior west-examples from Utah. Rangelands 1998, 20, 17–24. [Google Scholar]
- Elliott, G.P.; Baker, W.L. Quaking aspen (Populus tremuloides Michx.) at treeline: A century of change in the San Juan Mountains, Colorado, USA. J. Biogeogr. 2004, 31, 733–745. [Google Scholar] [CrossRef]
- Rogers, P.C.; Sheppard, W.D.; Bartos, D.L. Aspen in Sierra Nevada: Regional conservation of a continental species. Nat. Area J. 2007, 27, 183–193. [Google Scholar] [CrossRef]
- Barnes, B.V. Phenotypic variation of trembling aspen in western North America. For. Sci. 1975, 21, 319–328. [Google Scholar]
- Mueggler, W.F. Age distribution and reproduction of Intermountain aspen stands. West. J. Appl. For. 1989, 4, 41–45. [Google Scholar]
- Rogers, P.C.; Leffler, A.J.; Ryel, R.J. Landscape assessment of a stable aspen community in southern Utah, USA. For. Ecol. Manag. 2009, 259, 487–495. [Google Scholar] [CrossRef]
- Baker, F.S. Aspen reproduction in relation to management. J. For. 1918, 16, 389–398. [Google Scholar]
- Schier, G.A.; Campbell, R.B. Aspen sucker regeneration following burning and clearcutting on two sites in the Rocky Mountains. For. Sci. 1978, 24, 303–308. [Google Scholar]
- Brown, J.K.; Simmerman, D.G. Appraising fuels and flammability in western aspen: A prescribed fire guide. In USDA FS GTR-INT-205; USDA Forest Service: Washington, DC, USA, 1986. [Google Scholar]
- DeByle, N.V.; Bevins, C.D.; Fischer, W.C. Wildfire occurrence in aspen in the interior western United States. West. J. Appl. For. 1987, 2, 73–76. [Google Scholar]
- Madritch, M.; Greene, S.; Lindroth, R. Genetic mosaics of ecosystem functioning across aspen-dominated landscapes. Oecologia 2009, 160, 119–127. [Google Scholar] [CrossRef] [PubMed]
- LaRade, S.; Bork, E. Short Communication: Aspen forest overstory relations to understory production. Can. J. Plant Sci. 2011, 91, 847–851. [Google Scholar] [CrossRef]
- Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent declines of Populus tremuloides in North America linked to climate. For. Ecol. Manag. 2013, 299, 35–51. [Google Scholar] [CrossRef]
- Hely, C.; Bergeron, Y.; Flannigan, M.D. Effects of stand composition on fire hazard in mixed-wood Canadian boreal forest. J. Veg. Sci. 2000, 11, 813–824. [Google Scholar] [CrossRef]
- Kemperman, J.A.; Barnes, B.V. Clone size in American aspens. Can. J. Bot. 1976, 54, 2603–2607. [Google Scholar] [CrossRef]
- Romme, W.H.; Turner, M.G.; Gardner, R.H.; Hargrove, W.W.; Tuskan, G.A.; Despain, D.G.; Renkin, R.A. A rare episode of sexual reproduction in aspen (Populus tremuloides Michx.) following the 1988 Yellowstone fires. Nat. Areas J. 1997, 17, 17–25. [Google Scholar]
- Long, J.N.; Mock, K. Changing perspectives on regeneration ecology and genetic diversity in western quaking aspen: Implications for silviculture. Can. J. For. Res. 2012, 42, 2011–2021. [Google Scholar] [CrossRef]
- Kulakowski, D.; Veblen, T.T.; Drinkwater, S. The persistence of quaking aspen (Populus tremuloides) in the Grand Mesa area, Colorado. Ecol. Appl. 2004, 14, 1603–1614. [Google Scholar] [CrossRef]
- Kurzel, B.P.; Veblen, T.T.; Kulakowski, D. A typology of stand structure and dynamics of quaking aspen in northwestern Colorado. For. Ecol. Manag. 2007, 252, 176–190. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Berry, J.A.; Smith, D.D.; Sperry, J.S.; Anderegg, L.D.L.; Field, C.B. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. PNAS 2011, 109, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Shinneman, D.J.; Baker, W.L.; Rogers, P.C.; Kulakowski, D. Fire regimes of quaking aspen in the Mountain West. For. Ecol. Manag. 2013, 299, 22–34. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Rebain, S.A. The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation; Internal Report; US Department of Agriculture, Forest Service, Forest Management Service Center: Fort Collins, CO, USA, 2010; p. 407. [Google Scholar]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50. [Google Scholar] [CrossRef]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior; RMRS-RP-29; Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 59. [Google Scholar]
- Raymond, C.L.; Peterson, D.L. Fuel treatments alter the effects of wildfire in a mixed-evergreen forest, Oregon, USA. Can. J. For. Res. 2005, 35, 2981–2995. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest. For. Ecol. Manag. 2005, 215, 21–36. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J. Silvicultural and reserve impacts on potential fire behavior and forest conservation: Twenty-five years of experience from Sierra Nevada mixed conifer forests. Biol. Conserv. 2005, 125, 369–379. [Google Scholar] [CrossRef]
- DeRose, R.J.; Long, J.N. Wildfire and spruce beetle outbreak: Simulation of interacting disturbances in the central Rocky Mountains. Ecoscience 2009, 16, 28–38. [Google Scholar] [CrossRef]
- Klutsch, J.G.; Battaglia, M.A.; West, D.R.; Costello, S.L.; Negron, J.F. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado. West. J. Appl. For. 2011, 26, 101–109. [Google Scholar]
- Cruz, M.G.; Alexander, M.E. Assessing crown fire potential in coniferous forests of western North America: A critique of current approaches and recent simulation studies. Int. J. Wildland Fire 2010, 19, 377–398. [Google Scholar] [CrossRef]
- Reinhardt, E.D.; Crookston, N.L.; Rebain, S.A. The Fire and Fuels Extension to the Forest Vegetation Simulator and Addendum; RMRS-GTR-116; Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; p. 220. [Google Scholar]
- Edminster, C.B.; Mowrer, H.T.; Sheppard, W.D. Site Index Curves for Aspen in the Central Rocky Mountains; RM-453; Rocky Mountain Research Station: Fort Collins, CO, USA, 1985; p. 4. [Google Scholar]
- Crookston, N.L.; Dixon, G.E. The forest vegetation simulator: A review of its structure, content, and applications. Comput. Electron. Agric. 2005, 49, 60–80. [Google Scholar] [CrossRef]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; USDA FS RMRS-GTR-153; Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 72. [Google Scholar]
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; General Technical Report INT-122; Forest Range Experiment Station: Ogden, UT, USA; USDA Forest Service: Washington, DC, USA, 1982. [Google Scholar]
- Bradshaw, L.; McCormick, E. Fire Family Plus User’s Guide; General Technical Report RMRS-GTR-67WWW; Rocky Mountain Research Station: Ogden, UT, USA; USDA Forest Service: Washington, DC, USA, 2000. [Google Scholar]
- Crosby, J.S.; Chandler, C.C. Get the most from your windspeed observations. Fire Manag. Today 2004, 64, 53–55. [Google Scholar]
- Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; McIver, J.D.; Metlen, K.; et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US forests. Ecol. Appl. 2009, 19, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Forest Vegetation Simulator; Version 2.02; United States Department of Agriculture, Forest Service, Forest Management Service Center: Fort Collins, CO, USA, 2013.
- Hothorn, T.; Hornik, K.; Zeilis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef]
- R; Version 3.1.1; A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; ISBN ISBN 3-900051-07-0.
- Roccaforte, J.P.; Fule, P.Z.; Covington, W. Wallace landscape-scale changes in canopy fuels and potential fire behavious following ponderosa pine restoration treatments. Int. J. Wildland Fire 2008, 17, 293–303. [Google Scholar] [CrossRef]
- Hely, C.; Flannigan, M.; Bergeron, Y.; McRae, D. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res. 2001, 31, 430–441. [Google Scholar] [CrossRef]
- Alexander, M.E.; Maffey, M.E. Predicting fire behavior in Canada’s aspen forests. Fire Manag. Notes 1993, 54, 10–13. [Google Scholar]
- Drever, C.R.; Drever, M.C.; Messier, C.; Bergeron, Y.; Flannigan, M. Fire and the relative roles of weather, climate and landscape characteristics in the Great Lakes-St. Lawrence forest of Canada. J. Veg. Sci. 2008, 19, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Engber, E.A.; Varner, J.M.; Arguello, L.A.; Sugihara, N.G. The effects of conifer encroachment and overstory structure on fuels and fire in an oak woodland landscape. Fire Ecol. 2011, 7, 32–50. [Google Scholar] [CrossRef]
- Alexander, M.E. Surface fire spread potential in trembling aspen during summer in the boreal forest region of Canada. For. Chron. 2010, 86, 200–212. [Google Scholar] [CrossRef]
- Brown, J.K.; Oberheu, R.D.; Johnston, C.M. Handbook for Inventorying Surface Fuels and Biomass in the Interior West; General Technical Report INT-290; Forest Range Experiment Station: Ogden, UT, USA; USDA Forest Service: Washington, DC, USA, 1982; p. 48. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; General Technical Report INT-115; Forest Range Experiment Station: Ogden, UT, USA; USDA Forest Service: Washington, DC, USA, 1972; p. 40. [Google Scholar]
- Cumming, S.G. Forest type and wildfire in the Alberta boreal mixedwood: What do fires burn? Ecol. Appl. 2001, 11, 97–110. [Google Scholar] [CrossRef]
- Wang, C.C. Fire severity in relation to canopy composition within burned boreal mixedwood stands. For. Ecol. Manag. 2002, 163, 85–92. [Google Scholar] [CrossRef]
- Keyser, T.L.; Smith, F.W.; Shepperd, W.D. Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA. Can. J. For. Res. 2005, 35, 2679–2684. [Google Scholar] [CrossRef]
- Smith, E.A.; O’Loughlin, D.; Buck, J.R.; St. Clair, S.B. The influences of conifer succession, physiographic conditions and herbivory on quaking aspen regeneration after fire. For. Ecol. Manag. 2011, 262, 325–330. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeRose, R.J.; Leffler, A.J. Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA. Forests 2014, 5, 3241-3256. https://doi.org/10.3390/f5123241
DeRose RJ, Leffler AJ. Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA. Forests. 2014; 5(12):3241-3256. https://doi.org/10.3390/f5123241
Chicago/Turabian StyleDeRose, R. Justin, and A. Joshua Leffler. 2014. "Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA" Forests 5, no. 12: 3241-3256. https://doi.org/10.3390/f5123241
APA StyleDeRose, R. J., & Leffler, A. J. (2014). Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA. Forests, 5(12), 3241-3256. https://doi.org/10.3390/f5123241