Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens
Abstract
:1. Introduction
Tarraleah | Southport | Meunna | Florentine | |
---|---|---|---|---|
Latitude | 42°16′32′′ | 43°22′41′′ | 41°05′6′′ | 42°39′43′′ |
Longitude | 146°27′35′′ | 146°56′3′′ | 145°29′0′′ | 146°28′8′′ |
Elevation | 600 m | 120 m | 270 m | 270 m |
Annual Rainfall (sum of months) | 1130 mm | 1139 mm | 1526 mm | 1433 mm |
Annual evaporation (sum of months) | 893 mm | 970 mm | 948 mm | 915 mm |
Effective annual rainfall | 237 mm | 169 mm | 578 mm | 518 mm |
Mean Annual Temp | 9.8 °C | 12.0 °C | 12.3 °C | 10.7 °C |
Mean min temp coolest month | 0.1 °C | 3.4 °C | 4.2 °C | 1.2 °C |
Geology | Tertiary basalt | Triassic sandstone | Tertiary basalt | Ordovician limestone |
Previous land use | Pine plantation | Native forest | Pasture | Native forest |
Tasmanian climate zone [26] | Cool-moist | Warm-moist | Warm-moist | Cool-moist |
- (i)
- How strong is the genetic control of AWV?
- (ii)
- How genetically stable is standing tree AWV across a range of environments in Tasmania?
- (iii)
- How robust are the reported genetic correlations of AWV with the traditional selection criteria – basic density and DBH?
2.Experimental Section
2.1. Eucalyptus Nitens Progeny Trials
Tarraleah | Southport | Meunna | Florentine | |
---|---|---|---|---|
Replicates | 6 | 5 | 5 | 6 |
Incomplete blocks (per replicate) | 21 | 21 | 21 | 21 |
Family plots per block | 20 | 20 | 20 | 20 |
Trees per family plot | 5 | 5 | 5 | 5 |
Number of trees planted | 12,600 | 10,500 | 10,500 | 12,600 |
Thinning at year 4/trees per plot remaining | N/A | N/A | 2 | N/A |
Percentage of trees remaining at DBH assessment age | 86 | 90 | 32 | 65 |
Number of families for AWV (age in years) [23,24] | 181 (14) # | 127 (19) | 414 (19) | 417 (19) |
Number of families for core BD (age in years) [34] | 104 (9) # | N/A | 112 (9) # | N/A |
Number of families for wedge BD (age in years) [23,24] | 181 (14)# | 125 (19) | N/A | N/A |
Number of families for DBH (age in years) [23,24,26] | 417 (14) # | 408 (19) | 416 (19) # | 419 (19) |
Southport | Meunna | Florentine | |
---|---|---|---|
Tarraleah | |||
AWV | 126 | 177 | 180 |
Core BD | 102 | ||
Wedge BD | 126 | ||
DBH | 409 | 411 | 416 |
Southport | |||
AWV | 124 | 127 | |
DBH | 403 | 408 | |
Meunna | |||
AWV | 414 | ||
DBH | 416 |
2.2. Statistical Analyses
3. Results and Discussion
3.1. Results
Trait | Site | Age | Southern | Northern | Connor’s Plain | Race (p value) | Additive Variance | % Evolvability | ||
---|---|---|---|---|---|---|---|---|---|---|
AWV (km s−1) | Florentine | 19 | 3.75 (0.01) | 3.60 (0.02) | 3.51 (0.03) | *** | 0.023 (0.005) *** | 0.39 (0.09) | 4.2 | 2.6 |
Meunna | 19 | 3.62 (0.01) | 3.50 (0.01) | 3.43 (0.03) | *** | 0.008 (0.004) * | 0.16 (0.08) | 2.6 | 1.0 | |
Southport | 19 | 3.68 (0.02) | 3.57 (0.04) | 3.44 (0.06) | *** | 0.028 (0.008) *** | 0.44 (0.13) | 4.7 | 3.1 | |
Tarraleah | 14 | 3.45 (0.01) | 3.31 (0.02) | 3.25 (0.04) | *** | 0.025 (0.004) *** | 0.74 (0.11) | 4.8 | 4.1 | |
CoreBD (kg m−3) | Meunna | 9 | 407 (2) | 404 (3) | 400 (5) | ns | 352 (110) *** | 0.39 (0.12) | 4.6 | 2.9 |
Tarraleah | 9 | 454 (2) | 450 (3) | 446 (5) | ns | 382 (113) *** | 0.43 (0.12) | 4.3 | 2.8 | |
WedgeBD (kg m−3) | Southport | 19 | 521 (3) | 513 (5) | 496 (9) | * | 486 (176) *** | 0.35 (0.13) | 4.3 | 2.6 |
Tarraleah | 14 | 475 (2) | 472 (3) | 477 (6) | ns | 385 (85) *** | 0.40 (0.09) | 4.1 | 2.6 | |
DBH (cm) | Florentine | 19 | 25.6 (0.2) | 23.9 (0.2) | 22.8 (0.5) | *** | 6.41 (1.20) *** | 0.09 (0.02) | 10.5 | 3.2 |
Meunna | 19 | 32.0 (0.2) | 29.6 (0.3) | 28.3 (0.6) | *** | 14.72 (2.31) *** | 0.23 (0.03) | 12.8 | 6.1 | |
Southport | 19 | 17.0 (0.2) | 16.6 (0.2) | 16.4 (0.3) | * | 2.78 (0.47) *** | 0.11 (0.02) | 10.0 | 3.3 | |
Tarraleah | 14 | 20.3 (0.2) | 19.3 (0.2) | 18.8 (0.4) | *** | 7.89 (0.90) *** | 0.18 (0.02) | 14.4 | 6.1 |
Trait | Site | Florentine | Meunna | Southport |
---|---|---|---|---|
AWV (km s−1) | Meunna | 0.86 (0.26) ns | ||
Southport | 0.87 (0.19) ns | 0.61 (0.36) ns | ||
Tarraleah | 0.95 (0.13) ns | 0.68 (0.25) ns | 0.99 (0.11) ns | |
Core BD (kg m−3) | Tarraleah | 0.76 (0.18) ns | ||
Wedge BD (kg m−3) | Tarraleah | 0.70 (0.19) ns | ||
DBH (cm) | Meunna | 0.79 (0.11) * | ||
Southport | 0.71 (0.11) ** | 0.69 (0.10) ** | ||
Tarraleah | 0.93 (0.08) ns | 0.84 (0.07) ** | 0.86 (0.08) * |
3.2. Discussion
Site | Trait | AWV (km s−1) | DBH (cm) | ||
---|---|---|---|---|---|
rg | rp | rg | rp | ||
Meunna | Core BD9 (kg m−3) | 0.15 (0.35) ns | 0.24 (0.08) ** | −0.18 (0.21) ns | −0.02 (0.05) ns |
DBH19 (cm) | 0.51 (0.19) ** | 0.19 (0.03) *** | |||
Southport | Wedge BD19 (kg m−3) | 0.87 (0.17) *** | 0.37 (0.04) *** | 0.15 (0.23) ns | −0.15 (0.05) ** |
DBH19 (cm) | 0.18 (0.21) ns | 0.04 (0.04) ns | |||
Tarraleah | Core BD9 (kg m−3) | 0.78 (0.22) ** | 0.63 (0.23) * | 0.12 (0.18) ns | 0.11 (0.05) * |
Wedge BD14 (kg m−3) | 0.70 (0.10) *** | 0.23 (0.03) *** | 0.24 (0.15) ns | −0.04 (0.04) ns | |
DBH14 (cm) | 0.20 (0.13) ns | 0.08 (0.03) * | |||
Florentine | DBH19 (cm) | 0.71 (0.12) *** | 0.21 (0.03) *** |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gavran, M.; Parsons, M. Australian Plantation Statistics 2011; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, ACT, Australia, 2011; pp. 1–43. [Google Scholar]
- Gavran, M. Australian Plantation Statistics 2013 Update; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2013; pp. 1–15. [Google Scholar]
- Gavran, M.; Frakes, I.; Davey, S.; Mahendrarajah, S. Australia’s Plantation Log Supply 2010–2054; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2012; pp. 1–55. [Google Scholar]
- Hamilton, M.G.; Joyce, K.; Williams, D.; Dutkowski, G.; Potts, B.M. Acheivements in forest tree improvement in Australia and New Zealand 9. Genetic improvement of Eucalyptus nitens in Australia. Aust. For. 2008, 71, 82–93. [Google Scholar] [CrossRef]
- Boland, D.J.; Brooker, M.I.H.; Chippendale, G.M.; Hall, N.; Hylnd, B.P.M.; Johnson, R.D.; Klenig, D.A.; Turner, J.D. Forest Trees of Australia; CSIRO: Melbourne, Victoria, Australia, 1992; pp. 1–687. [Google Scholar]
- Hamilton, M.G.; Potts, B.M. Review of Eucalyptus nitens genetic parameters. N. Z. J. For. Sci. 2008, 38, 102–119. [Google Scholar]
- Swain, T.L.; Verryn, S.D.; Laing, M.D. A comparison of the effect of genetic improvement, seed source and seedling seed orchard variables on progeny growth in Eucalyptus nitens in South Africa. Tree Genet. Genomes 2013, 9, 767–778. [Google Scholar] [CrossRef]
- Battaglia, M. Matching species to site. In Farm Forestry—A Technical and Business Handbook; Davidson, N., Volker, P., Leech, M., Lyons, A., Beadle, C., Eds.; University of Tasmania: Hobart, Tasmania, Australia, 2006; pp. 196–201. [Google Scholar]
- Tepper, C. Site Matching and Establishing Eucalypt sawlog Species in Southern Australia. In Proceedings of the Joint Venture Agroforestry Program Conference: Plantation Eucalypts for High-Value Timber: Enhancing Investment Through Research and Development, Moorabin, Victoria, Australia, 9–12 October 2007; pp. 35–88.
- Laffan, M. Temperate Forest Soils of Tasmania and Northern South Island, New Zealand: Properties, Distribution, Genesis and Implications for Sustainable Use; University of Tasmania: Hobart, Tasmania, Australia, 2002; pp. 1–246. [Google Scholar]
- Eldridge, K.; Davidson, J.; Harwood, C.; van Wyk, G. Eucalypt Domestication and Breeding; Clarendon Press: Oxford, UK, 1993; pp. 1–288. [Google Scholar]
- Kibblewhite, R.P.; Johnson, B.I.; Shellbourne, C.J.A. Kraft pulp qualities of Eucalyptus nitens, E. globulus, and E. maidenii, at ages 8 and 11 years. N. Z. J. For. Sci. 2000, 30, 447–457. [Google Scholar]
- Tibbits, W.N.; Hodge, G.R. Genetic parameters for cold hardiness in Eucalyptus nitens (Deane & Maiden) Maiden. Silvae Genet. 2003, 52, 89–97. [Google Scholar]
- Hamilton, M.G.; Williams, D.R.; Tilyard, P.; Pinkard, E.A.; Wardlaw, T.; Glen, M.; Vaillancourt, R.E.; Potts, B.M. A latitudinal cline in disease resistance of a host tree. Heredity 2013, 110, 372–379. [Google Scholar] [CrossRef]
- Potts, B.; Hamilton, M.; Blackburn, D. Developing a Eucalypt Resource: Learning from Australia and Elsewhere. In Genetics of Eucalypts: Traps and Opportunities; Walker, J., Ed.; Wood Technology Research Centre, University of Canterbury: Christchurch, New Zealand, November 2011; pp. 1–158. [Google Scholar]
- Wardlaw, T. Managing biotic risks. In Developing a Eucalypt Resource: Learning from Australia and Elsewhere; Walker, J., Ed.; Wood Technology Research Centre, University of Canterbury: Christchurch, New Zealand, 2011; pp. 105–124. [Google Scholar]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; CAB International: Wallingford, CT, USA, 2007; pp. 1–682. [Google Scholar]
- Matheson, A.C.; Cotterill, P.P. Utility of genotype × environment interactions. For. Ecol. Manag. 1990, 30, 159–174. [Google Scholar] [CrossRef]
- Zas, R.; Merlo, E.; Fernandez-Lopez, J. Genotype × Environment interaction in maritime pine families in Galacia, Northwest Spain. Silvae Genetica 2004, 43, 175–182. [Google Scholar]
- Burdon, R.D. Genetic correlation as a concept of studying genotype-environment interaction in forest tree breeding. Silvae Genet. 1977, 26, 168–175. [Google Scholar]
- Greaves, B.L.; Borralho, M.G. The influence of basic density and pulp yield on the cost of eucalypt kraft pulping: A theoretical model of tree breeding. Appita 1996, 49, 90–95. [Google Scholar]
- Lenz, P.; Auty, D.; Achim, A.; Beaulieu, J.; Mackay, J. Genetic improvement of white spruce mechanical wood traits-early screening by means of acoustic velocity. Forests 2013, 4, 575–594. [Google Scholar] [CrossRef]
- Lowell, E.C.; Todoroki, C.L.; Briggs, D.G.; Dykstra, P.D. Examination of Acoustic Velocity Along Veneer Value-Chain in Douglas-Fir Trees. In Proceedings of the 18th International Nondestructive Testing and Evaluation of Wood Symposium, Madison, Wisconsin, USA, 24–27 September 2013; Ross, R.J., Wang, X., Eds.; USDA Forest Service’s Forest Products Laboratory (FPL): Madison, WI, USA, 2011; pp. 125–132. [Google Scholar]
- Blackburn, D.; Farrell, R.; Hamilton, M.; Volker, P.; Harwood, C.; Williams, D.; Potts, B. Genetic improvement for pulpwood and peeled veneer in Eucalyptus nitens. Can. J. For. Res. 2012, 42, 1724–1732. [Google Scholar] [CrossRef]
- Blackburn, D.P.; Hamilton, M.G.; Harwood, C.E.; Innes, T.C.; Potts, B.M.; Williams, D. Stiffness and checking of Eucalyptus nitens sawn boards: Genetic variation and potential for genetic improvement. Tree Genet. Genomes 2010, 6, 757–765. [Google Scholar] [CrossRef]
- Wardlaw, T. A climate analysis of the current and potential future Eucalyptus nitens and E. globulus plantation estate on Tasmanian State forest. Tasforests 2011, 19, 17–27. [Google Scholar]
- Mora, C.R.; Schimleck, L.R.; Isik, F.; Mahon, J.M., Jr.; Clark, A., III; Daniels, R.F. Relationships between acoustic variables and different measures of stiffness in standing Pinus taeda trees. Can. J. For. Res. 2009, 39, 1421–1429. [Google Scholar] [CrossRef]
- Farrell, R.; Innes, T.C.; Harwood, C.E. Sorting Eucalyptus nitens plantation logs using acoustic wave velocity. Aust. For. 2012, 75, 22–30. [Google Scholar] [CrossRef]
- Farrell, R.; Blum, S.; Williams, D.; Blackburn, D.; Chen, S. The Potential to Recover Higher Value Veneer Products from Fibre Managed Plantation Eucalypts and Broaded Market Opportunities for This Resource: Project No: PNB139–0809; Forest & Wood Products Australia: Melbourne, Victoria, Australia, 2011; pp. 1–75. [Google Scholar]
- McRae, T.A.; Pilbeam, D.J.; Powell, M.B.; Dutkowski, G.W.; Joyce, K.; Tier, B. Genetic evaluation in eucalypt breeding programs. In Proceedings of the IUFRO Conference – Eucalypts in a Changing World, Aveiro, Portugal, 2004; RAIZ Instituto de Investigacao da Floresta e Papel: Aveiro, Portugal; pp. 1–3.
- Dutkowski, G.W.; Potts, B.M.; Williams, D.R.; Kube, P.D.; McArthur, C. Geographic genetic variation in Central Victorian Eucalyptus nitens. In Proceedings of the Developing the Eucalypt of the Future, Valdivia, Chile, 10–15 September 2001; pp. 1–11.
- Hamilton, M.G.; Dutkowski, G.W.; Joyce, K.R.; Potts, B.M. Meta-analysis of racial variation in Eucalyptus nitens and E. denticulata. N. Z. J. For.Sci. 2011, 41, 217–230. [Google Scholar]
- Blackburn, D.P.; Hamilton, M.G.; Harwood, C.E.; Innes, T.C.; Potts, B.M.; Williams, D. Genetic variation in traits affecting sawn timber recovery in plantation grown Eucalyptus nitens. Ann. For. Sci. 2011, 68, 1187–1195. [Google Scholar] [CrossRef]
- Technical Association of the Pulp and Paper Industries. Basic Density and Moisture Content of Pulpwood, Reaffirmation ofT-258 om-02; TAPPI: Norcross, GA, USA, 1989; pp. 1–11. [Google Scholar]
- Hamilton, M.G.; Raymond, C.A.; Harwood, C.E.; Potts, B.M. Genetic variation in Eucalyptus nitens pulpwood and wood shrinkage traits. Tree Genet. Genomes 2009, 5, 307–316. [Google Scholar] [CrossRef]
- Gilmour, A.R.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASREML 3.0.; VSN International Ltd.: Hemel Hamstead, UK, 2009; pp. 1–320. [Google Scholar]
- Griffin, A.R.; Cotterill, P.P. Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet. 1988, 37, 124–131. [Google Scholar]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Sinauer Associates, Inc.: Sunderland, MA, USA, 1998; pp. 1–971. [Google Scholar]
- Self, S.G.; Liang, K.Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Soc. 1987, 82, 605–610. [Google Scholar] [CrossRef]
- Wielinga, B.; Raymond, C.A.; James, R.; Matheson, A.C. Genetic parameters and genotype by environment interactions for green and basic density and stiffness of Pinus radiata D. don estimated using acoustics. Silvae Genet. 2009, 58, 112–122. [Google Scholar]
- Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 47, 965–975. [Google Scholar] [CrossRef]
- Medhurst, J.; Downes, G.; Ottenschlaeger, M.; Harwood, C.; Evans, R.; Beadle, C. Intra-specific competition and radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown Eucalyptus nitens. Trees 2012, 26, 1771–1780. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Walker, J.C.F. Relationships between longitudinal growth strain and some wood properties in Eucalyptus nitens. Aust. For. 2004, 67, 254–260. [Google Scholar] [CrossRef]
- McKinley, R.; Ball, R.; Downes, G.; Fife, D.; Gritton, D.; Ilic, J.; Koehler, A.; Morrow, A.; Pongracic, S.; Roper, J. Resource Evaluation for Future Profit: Part. A—Wood Property Survey of the Green Triangle Region, Project No. PN03.3906; Forest and Wood Products Research and Development Corporation: Melbourne, Victoria, Australia, 2004; pp. 1–75. [Google Scholar]
- Evans, R.; Ilic, J. Rapid prediction of wood stiffness from microfibril angle and density. For. Prod. J. 2001, 51, 1–6. [Google Scholar]
- Hamilton, M.G.; Greaves, B.L.; Potts, B.M.; Dutkowski, G.W. Patterns of longitudinal within-tree variation in pulpwood and solidwood traits differ among Eucalyptus globulus genotypes. Ann. For. Sci. 2007, 64, 831–837. [Google Scholar] [CrossRef]
- Raymond, C.; Henson, M.; Pellietier, M.C.; Boyton, S.; Joe, B.; Thomas, D.; Smith, H.; Vanclay, J. Improving Dimensional Stability in Plantation-Grown Eucalyptus piluaris and E. dunnii Project Number PN06.3017; Forest and Wood Products Australia: Melbourne, Victoria, Australia, 2008; pp. 1–65. [Google Scholar]
- Matheson, A.C.; Gapare, W.J.; Ilic, J.; Wu, H.X. Inheritance and genetic gain in wood stiffnes in radiata pine assessed acoustically in standing trees. Silvae Genet. 2008, 57, 56–64. [Google Scholar]
- Kumar, S.; Jayawickrama, K.J.S.; Lee, J.; Lausberg, M. Direct and indirect measures of stiffness and strength show high heritability in a wind-pollinated radiata pine progeny test in New Zealand. Silvae Genet. 2002, 51, 256–260. [Google Scholar]
- Kumar, S.; Dungey, H.S.; Matheson, A.C. Genetic parameters and strategies for genetic improvement of stiffness in radiata pine. Silvae Genet. 2006, 55, 77–84. [Google Scholar]
- Kumar, S. Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine. Can. J. For. Res. 2004, 34, 2601–2610. [Google Scholar] [CrossRef]
- Dickson, R.L.; Raymond, C.A.; Joe, W.; Wilkinson, C.A. Segregation of Eucalyptus dunnii logs using acoustics. For. Ecol. Manag. 2003, 179, 243–251. [Google Scholar] [CrossRef]
- Rodriguez, R.; Real, P.; Espinosa, M.; Perry, D. A process-based model to evaluate site quality for Eucalyptus nitens in the Bio-Bio Region of Chile. Forestry 2009, 82, 149–162. [Google Scholar] [CrossRef]
- Isik, F.; Mora, C.R.; Schimleck, L.R. Genetic variation in Pinus taeda wood properties predicted using non-destructive techniques. Ann. For. Sci. 2011, 68, 283–293. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Blackburn, D.; Hamilton, M.; Williams, D.; Harwood, C.; Potts, B. Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens. Forests 2014, 5, 744-762. https://doi.org/10.3390/f5040744
Blackburn D, Hamilton M, Williams D, Harwood C, Potts B. Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens. Forests. 2014; 5(4):744-762. https://doi.org/10.3390/f5040744
Chicago/Turabian StyleBlackburn, David, Matthew Hamilton, Dean Williams, Chris Harwood, and Brad Potts. 2014. "Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens" Forests 5, no. 4: 744-762. https://doi.org/10.3390/f5040744
APA StyleBlackburn, D., Hamilton, M., Williams, D., Harwood, C., & Potts, B. (2014). Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens. Forests, 5(4), 744-762. https://doi.org/10.3390/f5040744