Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco)
Abstract
:1. Introduction
2. Methods
2.1. Site Description
Site Attributes | University of Idaho Experimental Forest |
---|---|
Longitude/Latitude | 46°50′05.15″ N/116° 50′25.19″ W |
Elevation (m) | 892 |
Total study precipitation (mm) | 3.1 |
Mean study temperature (°C) | 21.3 |
Temperature range (°C) | 8–39 |
Slope, aspect | 17%, Southern |
Mean daily vapor pressure deficit (kPa) | 2.58 |
Mean daily relative humidity (%) | 47 |
Relative humidity range (%) | 10–84 |
Mean soil temperature (°C) | 16.7 |
Mean soil moisture content (%) | 7.6 |
Tmax = Daily maximum temperature (°C)
2.2. Tree Measurements
Tree Attributes | 12.7–25.4 cm | 25.5–38.1 cm | 38.2–50.8 cm |
---|---|---|---|
Number of trees sampled | 10 | 10 | 10 |
Mean diameter (cm) at 1.37 m | 20.0 | 32.5 | 44.7 |
Diameter range (cm) | 14.7–25.4 | 26.4–38.1 | 41.1–49.2 |
Mean height (m) | 18.4 | 24.2 | 28.0 |
2.3. Statistical Analysis
3. Results
3.1. Moisture Loss
Significance Test | p-value |
---|---|
Size Class | |
size class 1–size class 2 | 0.0053 |
size class 1–size class 3 | <0.0001 |
size class 2–size class 3 | <0.0001 |
Stem Sample Location | |
upper–lower | 0.8214 |
Treatment Type | |
treatment 1 * upper–treatment 2 * upper | 0.0008 |
Sample Trees | Mean Starting (%) | Mean Ending (%) | Mean Loss (%) |
---|---|---|---|
Sapwood MC | 116 | 54 | 62 |
Heartwood MC | 67 | 25 | 42 |
3.2. Optimal Model
Model | Form | AIC |
---|---|---|
1 | Y(mc) = β0 + β1 Days Since Harvest + β2 (1|tree) + u | −620.86 |
2 | Y(mc) = β0 + β1 Days Since Harvest + β2 Size Class + β3 (1|tree) + u | −697.40 |
3 | Y(mc) = β0 + β1 Days Since Harvest + β2 Size Class + β3 VPD + β4 (1|tree) + u | −710.42 |
4 | Y(mc) = β0 + β1 Days Since Harvest + β2 Size Class + β3 VPD + β4 TRT + β5 (1|tree) + u | −688.17 |
5 | Y(mc) = β0 + β1 Days Since Harvest + β2 Size Class * TRT + β3 VPD + β4 (1|tree) + u | −702.17 |
Model: Y log(mc) = β1 Days Since Harvest + β2 Size Class + β3 VPD + β4 (1|tree) + u | |||
---|---|---|---|
Fixed Effects | |||
Co-efficient | Estimate | Std. error | t-value |
Intercept | −0.4948 | 0.0394 | −12.55 |
Days Since Harvest | −0.0219 | 0.0006 | −33.59 |
Size Class 2 | 0.1351 | 0.0117 | 11.51 |
Size Class 3 | 0.2851 | 0.0117 | 24.28 |
VPD | 0.0060 | 0.0003 | 3.79 |
Random Effects | |||
Groups | Name | Variance | Std. Dev. |
Tree | Intercept | 0.00001 | 0.00001 |
Residual | 0.00965 | 0.09825 | |
Marginal R-Squared | Conditional R-Squared | ||
0.0818 | 0.819 |
3.3. ΔAIC Analysis: Secondary Model
Model: Y log(mc) = β1 Days Since Harvest + β2 Size Class* TRT + β3 VPD + β4 (1|tree) + u | |||
---|---|---|---|
Fixed Effects | |||
Co-efficient | Estimate | Std. error | t-value |
Intercept | −0.4948 | 0.0439 | −12.25 |
Days Since Harvest | −0.0216 | 0.0006 | −33.50 |
Size Class 2 | 0.1351 | 0.0117 | 9.12 |
Size Class 3 | 0.2851 | 0.0166 | 16.65 |
TRT 2 | −0.0397 | 0.0168 | 4.48 |
Size Class 2:TRT 2 | 0.0247 | 0.0233 | 2.14 |
Size Class 3:TRT 2 | 0.0158 | 0.0235 | 1.98 |
VPD | 0.0060 | 0.0003 | 2.79 |
Random Effects | |||
Groups | Name | Variance | Std. Dev. |
Tree | Intercept | 0.00001 | 0.00001 |
Residual | 0.00925 | 0.09805 | |
Marginal R-Squared | Conditional R-Squared | ||
0.843 | 0.849 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
- Jarred D. Saralecos. Responsible for project development, data collection, analysis, writing, and revision process. Oversaw communication and revisions made by co-authors.
- Robert F. Keefe. Assisted in project development, data collection, writing, and revision process.
- Wade T. Tinkham. Assisted in data collection, analysis, and writing.
- Randall H. Brooks. Provided writing assistance and assisted with manuscript revision.
- Alistair M.S. Smith. Provided help with analysis and manuscript revisions.
- Leonard R. Johnson. Assisted in manuscript revisions and preliminary project development.
Conflicts of Interest
References
- Daniels, R.A. Marketing Your Timber: The Basics of Weight Scaling; Mississippi State University, Cooperative Extension Service: Starkville, MI, USA, 2005. [Google Scholar]
- Saucier, J.R.; Phillips, D.R. Weight Loss of Summer-Stored Sweetgum, Yellow-Poplar, Red Oak, and Loblolly Pine Sawlogs; Georgia Forestry Research Division: Athens, GA, USA, 1981; pp. 1–7. [Google Scholar]
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations Scaling Manual. Weight Scale Sampling; Crown Publication: Victoria, British Columbia, Canada, 2011; p. 502.
- Mann, L.K.; Johnson, D.W.; West, D.C.; Hornbeck, J.W.; Martin, C.W.; Riekerk, H.; Smith, C.T.; Swank, W.T.; Tritton, L.M.; Van Lear, D.H. Effects of whole-tree and stem-only learcutting on postharvest hydrologic losses, nutrient capital, and regrowth. For. Sci. 1988, 34, 412–428. [Google Scholar]
- Fonseca, M.A. The Measurement of Roundwood: Methodologies and Conversion Ratios; CABI Pub.: Wallingford, UK, 2005; p. 269. [Google Scholar]
- Yerkes, V.P. Weight and Cubic-Foot Relationships for Black Hills Ponderosa Pine Sawlogs; Research Note RM-78; U.S. Forest Service, Department of Agriculture: Fort Collins, CO, USA, 1966.
- Yerkes, V.P. Effect of Seasonal Stem Moisture Variation and Log Storage on Weight of Black Hills Ponderosa Pine; Research Note-96; U.S. Forest Service, Department of Agriculture: Fort Collins, CO, USA, 1967.
- Raczkowski, J.; Olek, W.; Guzenda, R. Moisture evaporation rates from sapwood and heartwood sample of Douglas-fir (Pseudotsuga menziesii Franco) green wood. Holz als Roh- und Werkstoff 2000, 58, 247–252. [Google Scholar]
- Spicer, R.; Gartner, B.L. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood. Trees 2001, 15, 222–229. [Google Scholar] [CrossRef]
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, A.S. A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 2013, 47, 141–161. [Google Scholar] [CrossRef]
- Pallardy, S.G.; Kozlowski, T.T. Physiology of Woody Plants, 3rd ed.; Elsevier: Amsterdam, the Netherlands, 2008; p. 454. [Google Scholar]
- Grainer, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Ag For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Marden, R.M.; Lothner, D.C.; Kallio, E. Wood and Bark Percentages and Moisture Contents of Minnesota Pulpwood Species; USDA Forest Service: St. Paul, MN, USA, 1975; pp. 1–9. [Google Scholar]
- Klepac, J.; Rummer, B.; Seixas, F. Seasonal Effects on Moisture Loss of Loblolly Pine. In Council on Forest Engineering Conference Proceedings, Charleston, SC, USA, June 22–25; pp. 1–9.
- Visser, J.J. Evaportation as a parameter to measure mass loss in biological drying Pinus radiata trees. J. Inst. Wood Sci. 1990, 11, 231–235. [Google Scholar]
- Holt, H.A. Delayed processing of felled trees to reduce wood moisture content. For. Prod. J. 1985, 35, 55–59. [Google Scholar]
- Johnson, N.E.; Zingg, J.G. Transpirational drying of douglas-fir: Effect on log moisture content and insect attack. J. For. 1969, 67, 816–819. [Google Scholar]
- Clark, J.; Gibbs, R.D. Studies in Tree Physiology: IV. Further investigations of seasonal changes in moisture content of certain canadian forest trees. Can. J. Bot. 1957, 3, 219–253. [Google Scholar]
- Patterson, W.A.; Post, I.L. Delayed bucking and bolewood moisture content. J. For. 1980, 78, 407–408. [Google Scholar]
- Garret, L.D. Delayed processing of felled trees to reduce moisture content. For. Prod. J. 1985, 35, 55–59. [Google Scholar]
- Peck, E.C. The Sap or Moisture in Wood; Forest Products Laboratory; Report No. D768; USDA: Madison, WI, USA, 1953.
- Fosberg, M.A.; Rothermel, R.C.; Andrews, P.L. Moisture content calculations for 1000-hour timelag fuels. For. Sci. 1981, 27, 19–26. [Google Scholar]
- Edmunds, R.L.; Hawk, G.M.; Long, J.N.; Franklin, J.F.; Emmingham, W.H.; Reed, K.L.; Clark, S.G.; Lassoie, J.P.; Johnson, D.W.; Cole, D.W.; et al. Analysis of coniferous forest ecosystems in the Western United States. Conifer. For. Biome 1982, 1–27. [Google Scholar]
- Waring, R.H.; Running, S.W. Sapwood water storage: Its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir. Plant Cell Environ. 1978, 1, 131–140. [Google Scholar] [CrossRef]
- Parker, J. Available water in stems of some rocky mountain conifers. Bot. Gaz. 1954, 115, 380–385. [Google Scholar] [CrossRef]
- Beedlow, P.A.; Tingey, D.T.; Lee, E.H.; Phillips, D.L.; Andersen, C.P.; Waschmann, R.S.; Johnson, M.G. Sapwood moisture in Douglas-fir boles and seasonal changes in soil water. Can. J. For. Res. 2007, 37, 1263–1271. [Google Scholar] [CrossRef]
- Beedlow, P.A.; Tingey, D.T.; Waschmann, R.S.; Phillips, D.L.; Johnson, M.G. Bole water content shows little seasonal variation in century-old Douglas-fir. Tree Physiol. 2007, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.F. Natural and logging disturbances in the temperate rain forests of the Central Coast, British Columbia. Can. J. For. Res. 2010, 40, 1970–1984. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Berlin Springer: New York, NY, USA, 2002; p. 283. [Google Scholar]
- Cooper, S.V.; Neiman, K.E.; Roberts, D.W. Forest Habitat Types of Northern Idaho: A Second Approximation; General Technical Report INT-236; United States Department of Agriculture: Ogden, UT, USA, 1991; pp. 1–152.
- Holden, Z.A.; Klene, A.E.; Keefe, R.F.; Moisen, G.G. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures. Agric. For. Meteorol. 2013, 180, 281–286. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 646. [Google Scholar]
- Whitehead, R.J.; Russo, G.L.; Hawkes, S.W.; Taylor, B.N.; Barclay, H.J.; Benton, R.A. Effect of a Spaced Thinning in Mature Lodgepole Pine on Within-Stand Microclimate and Fine Fuel Moisture Content; USDA, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 523–536.
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Uzoh, F.C.C. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA. Int. J. Wildland Fire 2012, 21, 428–435. [Google Scholar] [CrossRef]
- Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood Base Materials; ASTM Standard D 4442; ASTM International: West Conshohocken, PA, USA, 2007.
- Simpson, W.T. Specific Gravity, Moisture Content, and Density Relationship for Wood; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1993. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2013. ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 10 November 2004).
- Akaike, H. A new look at statistical model identification. IEEE Transact. Autom. Control 1974, 19, 716–722. [Google Scholar] [CrossRef]
- Breck, S.W.; Wilson, K.R.; Andersen, D.C. Beaver herbivory and its effect on cottonwood trees: Influence of flooding along matched regulated and unregulated rivers. River Res. Appl. 2003, 19, 43–58. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information—Theoretic Approach; Springer-Verlag: New York, NY, USA, 1998. [Google Scholar]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For. Ecol. Manag. 2005, 217, 129–146. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Cahill, A.T. Significance of AIC differences for precipitation intensity distributions. Adv. Water Resour. 2003, 26, 457–464. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Hanson, P.J.; Todd, D.E. Measuring stem water content in four deciduous hardwoods with a time-domain reflectometer. Tree Physiol. 1996, 16, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Domec, J.C.; Gartner, B.L. Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: Inferring the design criteria for Douglas-fir wood structure. Tree Physiol. 2002, 22, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Spelter, H. Converting among log scaling methods, scribner, international, and doyle versus cubic. J. For. 2004, 102, 33–39. [Google Scholar]
- Silversides, C.R. Energy from forest biomass—its effect on forest management practices in Canada. Biomass 1982, 2, 29–41. [Google Scholar] [CrossRef]
- Hakkila, P.; Heikkila, P.; Michelsen, P. Leaf-Seasoning in harvesting veneer Birch. Metsatieteellisen Tutkimuslaitoksen Julk. 1970, 70, 42–49. [Google Scholar]
- Sollins, P.; Cline, S.P.; Verhoeven, T.; Sachs, D.; Spycher, G. Patterns of log decay in old-growth Douglas-fir forests. Can. J. For. Res. 1987, 17, 1585–1595. [Google Scholar] [CrossRef]
- Harmon, M.E.; Sexton, J. Water balance of conifer logs in early stages of decomposition. Plant Soil Sci. 1995, 172, 141–152. [Google Scholar] [CrossRef]
- Boddy, L. Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biol. Biochem. 1983, 15, 149–157. [Google Scholar] [CrossRef]
- Nicholls, D.; Brackley, A. House Log Drying Rates in Southeast Alaska for Covered and Uncovered Softwood Logs; General Technical Report PNW-GTR-782; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2008; p. 18. [Google Scholar]
- Defo, M.; Brunette, G. A log drying model and its application to the simulation of the impact of bark loss. For. Prod. J. 2006, 56, 71–77. [Google Scholar]
- Meyer, H.A. Bark volume determination in trees. J. For. 1946, 44, 1067–1070. [Google Scholar]
- Philip, M.S. Measuring Trees and Forests, 2nd ed.; CAB International: Oxfordshire, UK, 1994; p. 310. [Google Scholar]
- Murphy, G.E.; Pilkerton, S.J. Seasonal impacts of bark loss on simulated payloads, bark delivery, and transport costs for freshly harvested logs. For. Prod. J. 2011, 61, 71–76. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Saralecos, J.D.; Keefe, R.F.; Tinkham, W.T.; Brooks, R.H.; Smith, A.M.S.; Johnson, L.R. Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco). Forests 2014, 5, 2289-2306. https://doi.org/10.3390/f5092289
Saralecos JD, Keefe RF, Tinkham WT, Brooks RH, Smith AMS, Johnson LR. Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco). Forests. 2014; 5(9):2289-2306. https://doi.org/10.3390/f5092289
Chicago/Turabian StyleSaralecos, Jarred D., Robert F. Keefe, Wade T. Tinkham, Randall H. Brooks, Alistair M. S. Smith, and Leonard R. Johnson. 2014. "Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco)" Forests 5, no. 9: 2289-2306. https://doi.org/10.3390/f5092289
APA StyleSaralecos, J. D., Keefe, R. F., Tinkham, W. T., Brooks, R. H., Smith, A. M. S., & Johnson, L. R. (2014). Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco). Forests, 5(9), 2289-2306. https://doi.org/10.3390/f5092289