Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and Setup
2.2. Earthworm Species and Collection
2.3. Experiment Responding Variables
2.3.1. Soil CO2 and 13C-CO2
2.3.2. The Remaining Mass of the Tabebuia Litter
2.3.3. Survivorship, Growth, and the 13C and 15N Composition of Earthworms
2.3.4. Soil and Soil Microbes
2.4. Statistic Analysis
3. Results
3.1. Litter Mass Loss and Soil C and N
3.2. Earthworm Populations
3.2.1. Earthworm Biomass and Survivorship
3.2.2. Tissue C/13C and N/15N in Native Estherella spp.
3.2.3. Tissue C/13C and N/15N in Native O. Borincana.
3.2.4. Tissue C/13C and N/15N in Invasive P. corethrurus
3.3. Microbial Biomass Carbon and Soil Respiration
3.4. Soil and Microbial Nitrogen Dynamics
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frelich, L.E.; Hale, C.M.; Scheu, S.; Holdsworth, A.R.; Heneghan, L.; Bohlen, P.J.; Reich, P.B. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions 2006, 8, 1235–1245. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Baker, G.H.; Callaham, M.A., Jr.; Damoff, G.A.; Fragoso, C.; Gonzaléz, G.; Winsome, T.; Zou, X. Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biol. Invasions 2006, 8, 1287–1300. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Callaham, M.A., Jr.; Drake, J.M.; Huang, C.-Y.; James, S.W.; Snyder, B.A.; Zhang, W. Pandora’s box contained bait: The global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 593–613. [Google Scholar] [CrossRef]
- Callaham, M.A., Jr.; Hendrix, P.F.; Phillips, R.J. Occurrence of an exotic earthworm (Amynthas agrestis) in undisturbed soils of the southern Appalachian mountains, USA. Pedobiologia 2003, 47, 466–470. [Google Scholar] [CrossRef]
- Kalisz, P.J.; Wood, H.B. Native and exotic earthworms in wildland ecosystems. In Earthworm Ecology and Biogeography in North America, 1st ed.; Hendrix, P.F., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 117–126. [Google Scholar]
- Lachnicht, S.L.; Hendrix, P.F.; Zou, X. Interactive effects of native and exotic earthworms on resource use and nutrient mineralization in a tropical wet forest soil of Puerto Rico. Biol. Fertil. Soils 2002, 36, 43–52. [Google Scholar] [CrossRef]
- Winsome, T.; Epstein, L.; Hendrix, P.F.; Horwath, W.R. Competitive interactions between native and exotic earthworm species as influenced by habitat quality in a California grassland. Appl. Soil. Ecol. 2006, 32, 38–53. [Google Scholar] [CrossRef]
- Bouché, M.B. Strategies Lombriciennes. In Soil Organisms as Components of Ecosystems: Proceedings of the VI International Soil Zoology Colloquium of the International Society of Soil Science (ISSS); Lohm, U., Persson, T., Eds.; Swedish Natural Science Research Council: Stockholm, Sweden, 1977; pp. 122–132. [Google Scholar]
- Lavelle, P.; Barois, I.; Cruz, I.; Fragoso, C.; Hernandez, A.; Pineda, A.; Rangel, P. Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol. Fertil. Soils 1987, 5, 188–194. [Google Scholar] [CrossRef]
- Lavelle, P.; Lapied, E. Endangered earthworms of Amazonia: An homage to Gilberto Righi. Pedobiologia 2003, 47, 419–417. [Google Scholar] [CrossRef]
- Groffman, P.M.; Bohlen, P.J.; Fisk, M.C.; Fahey, T.J. Exotic earthworm invasion and microbial biomass in temperate forest soils. Ecosystems 2004, 7, 43–54. [Google Scholar] [CrossRef]
- Hale, C.M.; Frelich, L.E.; Reich, P.B.; Pastor, J. Effects of European earthworm invasion on soil characteristics in Northern hardwood forests of Minnesota, USA. Ecosystems 2005, 8, 911–927. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Hendrix, P.F.; Fahey, T.J.; Bohlen, P.J.; Groffman, P.M. A simulation model to evaluate the impacts of invasive earthworms on soil carbon dynamics. Ecol. Model 2010, 20, 2447–2457. [Google Scholar] [CrossRef]
- Bossuyt, H.; Six, J.; Hendrix, P.F. Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. Eur. J. Soil Sci. 2004, 55, 393–399. [Google Scholar] [CrossRef]
- Curry, J.P.; Schmidt, O. The feeding ecology of earthworms—A review. Pedobiologia 2007, 50, 463–477. [Google Scholar] [CrossRef]
- Mummey, D.L.; Rillig, M.C.; Six, J. Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. Soil Biol. Biochem. 2006, 38, 1608–1614. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Lachnicht, S.L.; Callaham, M.A., Jr.; Zou, X. Stable isotopic studies of earthworm feeding ecology in tropical ecosystems of Puerto Rico. Rapid Commun. Mass Sp. 1999, 13, 1295–1299. [Google Scholar] [CrossRef]
- Neilson, R.; Boag, B.; Simth, M. Earthworm δ13C and δ15C analyses suggest that putative functional classifications of earthworms are site-specific and may also indicate habitat diversity. Soil Biol. Biochem. 2000, 32, 1053–1061. [Google Scholar] [CrossRef]
- Schmidt, O.; Scrimgeour, C.M.; Handley, L.L. Natural abundance of 15N and 13C in earthworms from a wheat and a wheat-clover field. Soil Biol. Biochem. 1997, 29, 1301–1308. [Google Scholar] [CrossRef]
- Zhang, W.; Hendrix, P.F.; Snyder, B.A.; Molina, M.; Li, J.; Rao, X.; Siemann, E.; Fu, S. Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology 2010, 91, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Gonzaléz, G.; Zou, X.; Borges, S. Earthworm abundance and species composition in abandoned tropical croplands: Comparison of tree plantations and secondary forests. Pedobiologia 1996, 40, 385–391. [Google Scholar]
- Sánchez-de León, Y.; Zou, X.; Borges, S.; Ruan, H. Recovery of native earthworms in abandoned tropical pastures. Conserv. Biol. 2003, 17, 999–1006. [Google Scholar] [CrossRef]
- Gonzaléz, G.; Zou, X.; Sabat, A.; Fetcher, N. Earthworm abundance and distribution pattern in contrasting plant communities within a tropical wet forest in Puerto Rico. Caribb. J. Sci. 1999, 35, 93–100. [Google Scholar]
- Huang, C.-Y.; Gonzaléz, G.; Hendrix, P.F. The re-colonization ability of native earthworm, Estherella spp., in Puerto Rican forests and pastures. Caribb. J. Sci. 2006, 42, 386–396. [Google Scholar]
- Scatena, F.N. An Introduction to the Physiography and History of the Bisley Experimental Watersheds in the Luquillo Mountains of Puerto Rico. Available online: www.srs.fs.usda.gov/pubs/gtr/gtr_so072.pdf (accessed on 19 September 2016).
- Schmidt, O.; Scrimgeour, C.M. A simple urea leaf-feeding method for the production of 13C and 15N labelled plant material. Plant Soil 2001, 229, 197–202. [Google Scholar] [CrossRef]
- Abelleira, O.J. Ecology of Novel Forests Dominated by the African Tulip Tree (Spathodea campanulata Beauv.) in Northcentral Puerto Rico. Master’s Thesis, University of Puerto Rico, Rio Piedras, Puerto Rico, 2009. [Google Scholar]
- Liu, Z.G.; Zou, X.M. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecol. Appl. 2002, 12, 1406–1417. [Google Scholar] [CrossRef]
- Joergensen, R.G. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biol. Biochem. 1996, 28, 25–31. [Google Scholar] [CrossRef]
- Sparling, G.P.; West, A.W. A direct extraction method to estimate soil microbial C: Calibration in situ using microbial respiration and 14C labelled cells. Soil Biol. Biochem. 1988, 20, 337–343. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Beare, M.H. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. Am. J. 1993, 57, 1007–1012. [Google Scholar] [CrossRef]
- Stark, J.M.; Hart, S.C. Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitorgen-15 analysis. Soil Sci. Soc. Am. J. 1996, 60, 1846–1855. [Google Scholar] [CrossRef]
- Coleman, D.C.; Fry, B. Carbon isotope techniques, 1st ed.; Academic Press, Inc.: San Diego, CA, USA, 1991. [Google Scholar]
- SAS Institute Inc. SAS Technical Report, SAS/STAT Software: The GLM Procedure; Version 6; SAS Institute Inc.: Cary, NC, USA, 1991; p. 217. [Google Scholar]
- Spain, A.V.; Saffigna, P.G.; Wood, A.W. Tissue carbon sources for Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in a sugarcane ecosystem. Soil Biol. Biochem. 1990, 22, 703–706. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Macko, S.A.; Shugart, H.H. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 1999, 118, 353–360. [Google Scholar] [CrossRef]
- Pollierer, M.M.; Langel, R.; Scheu, S.; Maraun, M. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. 2009, 41, 1221–1226. [Google Scholar] [CrossRef]
- Dijkstra, P.; Ishizu, A.; Doucett, R.; Hart, S.C.; Schwartz, E.; Menyailo, O.V.; Hungate, B.A. 13C and 15N natural abundance of the soil microbial biomass. Soil Biol. Biochem. 2006, 38, 3257–3266. [Google Scholar] [CrossRef]
- Binet, F.; Hallaire, V.; Curmi, P. Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction. Soil Biol. Biochem. 1997, 29, 577–583. [Google Scholar] [CrossRef]
- Chauvel, A.; Grimaldi, M.; Barros, E.; Blanchart, E.; Desjardins, T.; Sarrazin, M.; Lavelle, P. Pasture damage by an Amazonian earthworm. Nature 1999, 398, 32–33. [Google Scholar] [CrossRef]
- Fragoso, C.; Kanyonyo, J.; Moreno, A.; Senapati, B.K.; Blanchart, E.; Rodríguez, C. A survey of tropical earthworms: Taxonomy, biogeography and environmental plasticity. In Earthworm management in tropical agroecosystems; Lavelle, P., Brussaard, L., Hendrix, P., Eds.; CABI: New York, NY, USA, 1999; pp. 1–26. [Google Scholar]
- Gonzaléz, G.; Huang, C.-Y.; Zou, X.; Rodriguez, C. Earthworm invasions in the tropics. Biol. Invasions 2006, 8, 1247–1256. [Google Scholar] [CrossRef]
- Hallaire, V.; Curmi, P.; Duboisset, A.; Lavelle, P.; Pashanasi, B. Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. Euro. J. Soil Biol. 2000, 36, 35–44. [Google Scholar] [CrossRef]
- Butenschoen, O.; Marhan, S.; Scheu, S. Response of soil microorganisms and endogeic earthworms to cutting of grassland plants in a laboratory experiment. Appl. Soil Ecol. 2008, 38, 152–160. [Google Scholar] [CrossRef]
- Sheehan, C.; Kirwan, L.; Connolly, J.; Bolger, T. The effects of earthworm functional diversity of microbial biomass and the microbial community level physiological profile of soils. Euro. J. Soil Biol. 2008, 44, 65–70. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Edwards, C.A.; Zhang, Q.; Parmelee, R.W.; Allen, M. Indirect effects of earthworms on microbial assimilation of labile carbon. App. Soil Ecol. 2002, 20, 255–261. [Google Scholar] [CrossRef]
- Zhang, B.-G.; Li, G.-T.; Shen, T.-S.; Wang, J.-K.; Sun, Z. Changes in microbial C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol. Biochem. 2000, 32, 2055–2062. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Scheu, S.; Hale, C.M.; McLean, M.A.; Migge, S.; Groffman, P.M.; Parkinson, D. Non-native invasive earthworms as agents of change in northern temperate forests. Front. Ecol. Environ. 2004, 2, 427–435. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Partsch, S.; Parkinson, D.; Scheu, S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthopods and vegetation. Soil Biol. Biochem. 2007, 39, 1099–1110. [Google Scholar] [CrossRef]
- Fisk, M.C.; Fahey, T.J.; Groffman, P.M.; Bohlen, P.J. Earthworm invasion, fine-root distributions, and soil respiration in North temperate forests. Ecosystems 2004, 7, 55–62. [Google Scholar] [CrossRef]
- Lachnicht, S.L.; Hendrix, P.F. Interaction of the earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in a subtropical Spodosol. Soil Biol. Biochem. 2001, 33, 1411–1417. [Google Scholar] [CrossRef]
- Li, X.; Fisk, M.C.; Fahey, T.J.; Bohlen, P.J. Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biol. Biochem. 2002, 34, 1929–1937. [Google Scholar] [CrossRef]
- Wolters, V.; Joergensen, R.G. Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta: Lumbricidae). Soil Biol. Biochem. 1992, 24, 171–177. [Google Scholar] [CrossRef]
Earthworm Treatments | |||||
---|---|---|---|---|---|
Variables | Single species (E, O, P) | E + O | E + P | O + P | E + O + P |
Estherella spp. | |||||
Fresh weight (before) | 5.3 (0.5) | 4.2 (0.6) | 3.2 (0.4) | n/a | 2.2 (0.2) |
Fresh weight (after) | 4.6 (1.2) | 3.9 (1.1) | 2.7 (0.6) | n/a | 2.3 (0.4) |
Onychochaeta borincana | |||||
Fresh weight (before) | 4.9 (0.6) | 3.6 (0.5) | n/a | 2.7 (0.6) | 2.2 (0.4) |
Fresh weight (after) | 2.9 (1.8) | 2.4 (0.6) | n/a | 2.3 (0.7) | 1.6 (0.3) |
Pontoscolex corethrurus | |||||
Fresh weight (before) | 2.0 (0.3) | n/a | 1.5 (0.3) | 1.4 (0.1) | 1.2 (0.1) |
Fresh weight (after) | 1.8 (0.4) | n/a | 1.5 (0.1) | 1.7 (0.2) | 1.4 (0.2) |
Earthworm treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Initial | Soil | E | O | P | E + O | E + P | O + P | E + O + P | Statistics | |
Soil Carbon | |||||||||||
Total C | 39.6 (0.5) | 43.5 (2.5) | 42.5 (3.7) | 43.8 (2.0) | 41.0 (1.6) | 42.9 (3.8) | 42.1 (2.7) | 42.0 (1.5) | 42.1 (2.2) | F8, 27 = 1.0; p = 0.43 | |
Atom 13C (%) | 1.0753 a (0.0001) | 1.0752 a (0.0002) | 1.0767 bc (0.0003) | 1.0771 abc (0.0009) | 1.0767 ac (0.0004) | 1.0768 abc (0.0002) | 1.0776 bc (0.0005) | 1.0786 b (0.0020) | 1.0769 abc (0.0007) | F8, 27 = 7.2; p < 0.0001 | |
δ13C | −27.8 a (0.1) | −27.9 a (0.2) | −25.8 bc (0.3) | −26.1 abc (0.9) | −26.5 ab (0.4) | −26.4 abc (0.2) | −25.6 bc (0.4) | −24.8 c (1.8) | −26.3 abc (0.6) | F8, 27 = 7.2; p < 0.0001 | |
Soil Nitrogen | |||||||||||
Total N | 371.5 (2.3) | 367.9 (19.0) | 375.0 (19.5) | 370.8 (21.4) | 364.3 (11.0) | 369.1 (19.6) | 362.3 (19.7) | 367.4 (11.4) | 365.6 (8.3) | F8, 27 = 0.2; p = 0.9 | |
Atom 15N (%) | 0.36815 a (0.00005) | 0.36810 a (0.00005) | 0.36885 ab (0.00042) | 0.36858 ab (0.00012) | 0.36866 ab (0.00036) | 0.36889 ab (0.00025) | 0.36885 ab (0.00004) | 0.36915 b (0.00072) | 0.36882 ab (0.00033) | F8, 27 = 4.3; p = 0.002 | |
δ15N | 4.6 a (0.1) | 4.5 a (0.2) | 6.5 ab (1.1) | 5.8 ab (0.3) | 6.0 ab (1.0) | 6.6 ab (0.7) | 6.5 ab (0.1) | 7.3 b (2.0) | 6.4 ab (0.9) | F8, 27 = 4.3; p = 0.002 |
Earthworm treatments | ||||||
---|---|---|---|---|---|---|
Variables | Single species (E or O) | E + O | E + P | O + P | E + O + P | Statistics |
Estherella spp. | ||||||
Total C (%) | 46.3 (0.8) | 45.7 (1.3) | 46.2 (1.1) | n/a | 47.2 (1.8) | F3, 39 = 2.2; p = 0.10 |
Atom13C (%) | 1.0805 a (0.0039) | 1.0785 ab (0.0004) | 1.0781 b (0.0006) | n/a | 1.0788 ab (0.0007) | F3, 39 = 2.9; p = 0.047 |
δ13C | −23.0 a (3.5) | −24.8 ab (0.4) | −25.2 b (0.5) | n/a | −24.6 b (0.7) | F3, 39 = 2.9; p = 0.040 |
Total N (%) | 12.4 (0.5) | 12.3 (0.8) | 12.2 (1.0) | n/a | 12.7 (0.4) | F3, 39 = 0.8; p = 0.5 |
Atom15N (%) | 0.3690 (0.0002) | 0.3688 (0.0003) | 0.3689 (0.0004) | n/a | 0.3688 (0.0002) | F3, 39 = 1.0; p = 0.4 |
δ15N | 6.8 (0.6) | 6.2 (0.9) | 6.6 (1.0) | n/a | 6.5 (0.6) | F3, 39 = 1.0; p = 0.4 |
Onychochaeta borincana | ||||||
Total C (%) | 46.0 (1.2) | 46.6 (1.5) | n/a | 46.6 (1.3) | 46.5 (1.2) | F3, 25 = 0.4; p = 0.8 |
Atom13C (%) | 1.0823 (0.0046) | 1.0812 (0.0016) | n/a | 1.0845 (0.0102) | 1.0812 (0.0006) | F3, 25 = 0.5; p = 0.7 |
δ13C | −21.4 (4.2) | −22.4 (1.5) | n/a | −19.3 (9.4) | −22.3 (0.5) | F3, 25 = 0.5; p = 0.7 |
Total N (%) | 11.8 (0.8) | 12.5 (0.7) | n/a | 12.3 (0.7) | 12.4 (0.5) | F3, 25 = 1.8; p = 0.2 |
Atom15N (%) | 0.3693 (0.0013) | 0.3694 (0.0006) | n/a | 0.3705 (0.0035) | 0.3697 (0.0004) | F3, 25 = 0.4; p = 0.7 |
δ15N | 8.69 (3.6) | 8.2 (1.6) | n/a | 11.0 (9.5) | 8.9 (1.0) | F3, 25 = 0.4; p = 0.7 |
Earthworm treatments | |||||||
---|---|---|---|---|---|---|---|
Variables | Single species (P) | PJ | E + P | O + P | E + O + P | Statistics | |
Pontoscolex corethrurus | |||||||
Total C (%) | 47.0 (1.0) a | 41.0 (4.7) b | 44.7 (6.1) ab | 46.3 (1.6) a | 46.9 (0.3) a | F4, 52 = 3.9; p = 0.007 | |
Atom13C (%) | 1.0809 a (0.0008) | 1.0791 b (0.0011) | 1.0812 a (0.0009) | 1.0813 a (0.0012) | 1.0812 a (0.0005) | F 4, 52 = 4.8; p = 0.002 | |
δ13C | −22.6 a (0.8) | −24.3 b (1.4) | −22.4 a (0.8) | −22.2 a (1.1) | −22.3 a (0.5) | F 4, 52 = 4.7; p = 0.002 | |
Total N (%) | 11.9 (0.5) a | 9.2 (2.0) b | 11.3 (1.5) a | 11.4 (1.1) a | 11.9 (0.4) a | F 4, 52 = 6.0; p < 0.001 | |
Atom15N (%) | 0.3686 a (0.0001) | 0.3692 b (0.0003) | 0.3686 a (0.0002) | 0.3687 a (0.0003) | 0.3686 a (0.0001) | F 4, 52 = 7.2; p < 0.001 | |
δ15N | 5.9 (0.4) a | 7.6 (0.9) b | 5.9 (0.5) a | 6.1 (0.9) a | 5.9 (0.3) a | F 4, 52 = 7.2; p < 0.001 |
Earthworm Treatments | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Soil Only | Grass | Litter | Control | E | O | P | E + O | E + P | O + P | E + O + P | Statistics |
Microbial biomass | ||||||||||||
MBC | 741.3 (103.0) | 570.2 (167.9) | 568.3 (166.3) | 332.1 (183.2) | 659.8 (119.2) | 340.1 (115.3) | 528.8 (91.4) | 479.4 (119.2) | 448.1 (110.3) | 483.4 (199.5) | 431.7 (224.4) | F10,29 = 1.3; p = 0.26 |
MBC-13C | 8.0 (1.1) | 6.2 (1.3) | 6.2 (1.1) | 3.6 (1.3) | 7.2 (1.3) | 3.7 (1.2) | 5.7 (1.0) | 5.2 (1.3) | 4.9 (1.1) | 5.3 (2.2) | 4.7 (1.1) | F10, 29 = 1.3; p = 0.27 |
Atom13C (%) | 1.078 a (0.002) | 1.079 a (0.0004) | 1.083 ab (0.004) | 1.09 b (0.009) | 1.083 ab (0.003) | 1.082 ab (0.003) | 1.086 ab (0.004) | 1.085 ab (0.002) | 1.083 ab (0.002) | 1.086 ab (0.004) | 1.086 ab (0.003) | F10, 29 = 2.8; p = 0.015 |
δ13C | −36.1 a (1.4) | −34.9 ab (0.4) | −31.1 ab (3.5) | −30.6 ab (1.4) | −31.1 ab (2.3) | −32.0 ab (2.9) | −28.8 b (3.4) | −29.4 ab (1.8) | −31.5 ab (1.6) | −28.8 b (3.4) | −29.1 b (2.5) | F10, 29 = 3.3; p = 0.006 |
Variables | Soil Only | Grass | Litter | Control | E | O | P | E + O | E + P | O + P | E + O + P | Statistics |
Soil respiration at day 21 | ||||||||||||
C-CO2 | 1.73 a (0.79) | 3.87 ab (0.91) | 5.24 abc (0.92) | 9.51 c (4.95) | 8.01 bc (2.05) | 6.35 abc (1.58) | 9.32 bc (1.50) | 9.50 c (0.99) | 8.90 bc (1.09) | 9.99 c (3.17) | 7.88 bc (2.23) | F10, 32 = 5.2; p < 0.001 |
13C- CO2 (%) | 1.085 a (0.002) | 1.088 a (0.004) | 1.228 b (0.014) | 1.223 b (0.012) | 1.206 bc (0.020) | 1.209 bc (0.004) | 1.220 b (0.023) | 1.205 bc (0.007) | 1.215 bc (0.018) | 1.183 c (0.008) | 1.195 bc (0.010) | F10, 32 = 53.6; p < 0.0001 |
δ13C | −18.8 a (2.1) | −16.5 a (3.6) | 111.9 b (13.1) | 107.5 b (11.3) | 91.7 bc (18.7) | 94.3 bc (3.3) | 104.9 b (21.2) | 91.3 bc (6.9) | 100.2 bc (16.9) | 71.1 c (7.1) | 81.8 bc (8.9) | F10, 32 = 53.5; p < 0.0001 |
Earthworm Treatments | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Soil Only | Grass | Litter | Control | E | O | P | E + O | E + P | O + P | E + O + P | Statistics |
Microbial biomass | ||||||||||||
MBN | 124.6 (30.1) | 96.8 (26.8) | 110.2 (25.5) | 129.1 (54.5) | 190.4 (110.2) | 114.5 (31.0) | 162.1 (65.0) | 92.3 (27.9) | 111.0 (39.0) | 90.4 (21.9) | 136.9 (74.3) | F10,31 = 1.2; p = 0.3 |
MBN-15N (%) | 0.3691 a (0.0005) | 0.3747 b (0.0017) | 0.3693 a (0.0007) | 0.3708 a (0.0019) | 0.3709 a (0.0019) | 0.3694 a (0.0012) | 0.3711 a (0.0017) | 0.3721 ab (0.0015) | 0.3709 a (0.0004) | 0.3711 a (0.0008) | 0.3698 a (0.0001) | F10, 31 = 6.0; p < 0.0001 |
δ15N | 7.5 a (1.3) | 23.0 b (4.8) | 8.1 a (1.9) | 12.3 a (5.3) | 12.7 a (5.3) | 8.5 a (3.4) | 12.0 a (4.7) | 15.7 ab (4.1) | 12.5 a (1.2) | 13.2 a (2.3) | 9.4 a (0.1) | F10, 31 = 6.0; p < 0.0001 |
Dissolved inorganic N | ||||||||||||
DIN | 62.9 a (12.8) | 37.0 b (8.9) | 22.6 b (8.4) | 18.4 b (4.1) | 40.4 ab (8.6) | 38.8 ab (20.2) | 23.8 b (7.7) | 31.1 b (6.7) | 25.7 b (6.4) | 28.8 b (7.1) | 33.0 b (6.2) | F10, 31 = 5.7; p < 0.0001 |
DIN-15N (%) | 0.3692 a (0.0008) | 0.3958 b (0.0149) | 0.3687 a (0.0003) | 0.3740 a (0.0003) | 0.3770 a (0.0041) | 0.3749 a (0.0025) | 0.3751 a (0.0087) | 0.3784 a (0.0046) | 0.3749 a (0.0025) | 0.3813 ab (0.0076) | 0.3776 a (0.0043) | F10, 31 = 6.4; p < 0.0001 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-Y.; González, G.; Hendrix, P.F. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils. Forests 2016, 7, 277. https://doi.org/10.3390/f7110277
Huang C-Y, González G, Hendrix PF. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils. Forests. 2016; 7(11):277. https://doi.org/10.3390/f7110277
Chicago/Turabian StyleHuang, Ching-Yu, Grizelle González, and Paul F. Hendrix. 2016. "Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils" Forests 7, no. 11: 277. https://doi.org/10.3390/f7110277
APA StyleHuang, C. -Y., González, G., & Hendrix, P. F. (2016). Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils. Forests, 7(11), 277. https://doi.org/10.3390/f7110277