Fuel Classes in Conifer Forests of Southwest Sichuan, China, and Their Implications for Fire Susceptibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Selection and Measurements
2.3. Forest Fuel Profiles
2.3.1. Crown Layer
2.3.2. Shrub and Herb Layer
2.3.2. Surface Dead Layer
2.4. Data Analysis
2.5. Fire Behavior Simulations
3. Results
3.1. Description of Six ForestTypes
3.2. Pattern of Fire Types Burning in the Different Forest Types
3.3. The Differences among the Six Forest Types Using CCA
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire Science; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Peterson, D.L.; Johnson, M.C.; Agee, J.K.; Jain, T.B.; McKenzie, D.; Reinhardt, E.D. Forest Structure and Fire Hazard in Dry Forests of the Western United States; General Technical Report PNW-GTR-628; United States Department of Agriculture: Washington, DC, USA, 2005; p. 30. [Google Scholar]
- Menning, K.M.; Stephens, S.L. Fire climbing in the forest: A semi-qualitative, semiquantitative approach to assessing ladder fuel hazards. West. J. Appl. For. 2007, 22, 88–93. [Google Scholar]
- Alexander, M.E. Help with making crown fire hazard assessments. In Proceedings of the Protecting People and Homes from Wildfire in the Interior West: Proceedings of the Symposium and Workshop, Missoula, MT, USA, 6–8 October 1988; Fischer; Fischer, W.C., Arno, S.F., Eds.; USDA Forest Service: Washington, DC, USA, 1988. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Potential; Research Paper RMRS-29; USDA Forest Service, Rocky Mountain Research Station: Washington, DC, USA, 2001. [Google Scholar]
- Xu, L. The freezing weather and forest fire. For. Fire Prev. 1992, 3, 26–27. [Google Scholar]
- Wang, J.H. Forest Fire Hazardous Areas Based on RS and GIS in Panzhihua; Beijing Forestry University: Beijing, China, 2012. [Google Scholar]
- Li, F.J. Status of Forest Resources and Sustainable Management Countermeasures in Yanbian Country, Panzhihua; Sichuan Agricultural Uniersity: Ya’an, China, 2009. [Google Scholar]
- Li, D. The Relationship between Forest Fire and Meterological Factors in the Key Areas of Sichuan Province; Beijing Forestry University: Beijing, China, 2013. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Res. Pap. INT-115; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; p. 40. [Google Scholar]
- Wu, Z.W.; He, H.S.; Liu, X.M.; Deng, H.; He, W.; Li, X.; Li, S.; Song, G.; Wang, Q. Relationship between Loading of Dead Forest Fuels in Surface Soil and Environmental Factors in Fenglin Nature Reserve. J. Northest For. Univ. 2011, 39, 52–55. [Google Scholar]
- Sandbergh, D.; Ottmar, R.D.; Cushon, G.H. Characterizing fuels in the 21st century. Int. J. Wildland Fire 2001, 10, 381–387. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; McIver, J.D.; Metlen, K.; et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US Forests. Ecol. Appl. 2009, 19, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.K. Fire Behavior and Fuel Spatial Continuity of Major Forest Types in the Mountainous Area, Beijing; Beijing Forestry University: Beijing, China, 2013. [Google Scholar]
- Stambaugh, M.C.; Dey, D.C.; Guyette, R.P.; He, H.S.; Marschall, J.M. Spatial patterning of fuels and fire hazard across a central US deciduous forest region. Landsc. Ecol. 2011, 26, 923–935. [Google Scholar] [CrossRef]
- Uhl, C.; Kauffman, J.B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern amazon. Ecology 1990, 71, 437–449. [Google Scholar] [CrossRef]
- Hornby, L.G. Fire Control Planning in the Northern Rocky Mountain Region; Progress Report No. 1; USDA Forest Service, Northern Rocky Mountain Forest and Range Experiment Station: Ogden, UT, USA, 1936. [Google Scholar]
- Albini, F.A. Estimating Wildfire Behavior and Effects; General Technical Report INT-30; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1976. [Google Scholar]
- Andrews, P.L. Behave: Fire Behavior Prediction and Fuel Modeling System—BURN Subsystem, Part 1; USDA Forest Service: Washington, DC, USA, 1986. [Google Scholar]
- Zheng, H.N. Study on control measures of forest fires in southwest. Fire Saf. Sci. 1996, 1, 8–12. [Google Scholar]
- Hu, H.; Zhang, Z.; Wu, X. Type Classification of Forest Fuel in Tahe Forestry Bureau Based on Remote Sensing. J. Northeast For. Univ. 2007, 7, 20–21. [Google Scholar]
- Wang, S.; Chen, F.; Li, D. Vertical distribution characteristics of fuels in Pinus yunnanensis and its influence factors. Chin. J. Applly Ecol. 2013, 24, 331–337. [Google Scholar]
- Tian, X.R. Influences of ice storm on fuels in southern Sichuan. Fire Saf. Sci. 2011, 11, 43–47. [Google Scholar]
- Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann. For. Sci. 2007, 64, 287–299. [Google Scholar] [CrossRef]
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in portugal. Ann. For. Sci. 2009, 66, 415. [Google Scholar] [CrossRef]
- Mou, K.H.; Wang, J.X.; Ma, Z.G. Study on combustibility of forest (Pinus Yunnanensis Faranch) in west of Panzhihua. J. Sichuan For. Sci. Technol. 1991, 12(2), 28–36. [Google Scholar]
- Fan, J.R.; Zhang, Z.Y.; Li, L.H. Mountain demarcation and mountainous area divisions of Sichuan Province. Geogr. Res. 2015, 34, 65–73. [Google Scholar]
- Zhang, J.Q.; Wang, C.L.; Wang, D.X. Study on relationship between crown fire and flammable fuel in interlayer. Fire Saf. Sci. 1995, 4, 5–9. [Google Scholar]
- Alvarez, A.; Gracia, M.; Retana, J. Fuel types and crown fire potential in Pinus halepensis forests. Eur. J. For. Res. 2012, 131, 463–474. [Google Scholar] [CrossRef]
- Lemmon, P.E. A spherical densiometer for estimating forest overstory density. For. Sci. 1956, 1, 314–320. [Google Scholar]
- Liu, S.Q.; Shen, Z.H.; Sun, Y.L. Elementary discussions on the application of forest compass in Geological Profile Survey. Jiangxi Build. Mater. 2015, 2, 214. [Google Scholar]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System—1978; General Technical Report INT-39; USDA Forest Service: Washington, DC, USA, 1977; p. 6. [Google Scholar]
- Keyser, T.; Smith, F.W. Influence of Crown Biomass Estimators and Distribution on Canopy Fuel Characteristics in Ponderosa Pine Stands of the Black Hills. For. Sci. 2010, 56, 156–165. [Google Scholar]
- Matthews, S. Effect of drying temperature on fuel moisture content measurements. Int. J. Wildland Fire 2010, 19, 800–802. [Google Scholar] [CrossRef]
- Brown, J.K. Handbook for Inventorying Down Woody Material; General Technical Report INT-16; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1974; p. 24. [Google Scholar]
- Lin, Q.Z.; Shu, L.F. Forest Fire Introduction; University of Science and Technology of China Press: Hefei, China, 2003; pp. 142–148. [Google Scholar]
- Hu, H.Q. Forest Fire Ecology and Management; China Forestry Publishing House: Beijing, China, 2005; pp. 17–91. [Google Scholar]
- Zhou, Y.F.; Zhou, G.M.; Yu, S.Q.; Xu, X.J.; Jin, W. Spatial distribution of combustible substance of Schima superba stands in Zhejiang Province, Eastern China. J. Beijing For. Univ. 2008, 30, 99–107. [Google Scholar]
- Kucuk, O.; Bilgili, E.; Saglam, B. Estimating crown fuel loading for calabrian pine and Anatolian black pine. Int. J. Wildland Fire 2008, 17, 147–154. [Google Scholar] [CrossRef]
- Rothermel, R.C. Predicting behavior and size of crown fires in the Northern Rocky Mountains; Intermountain Forest and Range Experiment Station of USDA Forest Service: Ogden, UT, USA, 1991; pp. 1–46. [Google Scholar]
- Andrews, P.L.; Bevins, C.D.; Seli, R.C. BehavePlus Fire Modeling System User’s Guide; General Technical Report RMRS-GTR-106; USDA Forest Service: Washington, DC, USA, 2008. [Google Scholar]
- Graham, J.B.; McCarthy, B.C. Fuel and fire dynamics in eastern mixed-oak forests. In Proceedings of the Conference on Fire in Eastern Oak Forests: Delivering Science to Land Managers, Columbus, OH, USA, 15–17 November 2005; General Technical Report NRS-P-1. USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, 2006; p. 278. [Google Scholar]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50. [Google Scholar] [CrossRef]
- Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest; Cambridge University Press: London, UK, 1992; p. 129. [Google Scholar]
- Scott, J.H. Fuel Reduction in Residential and Scenic Forests: A Comparison of Three Treatments in a Western Montana Ponderosa Pine Stand; Research Paper RMRS-RP-5; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; p. 19. [Google Scholar]
- Ascoli, D.; Lonati, M.; Marzano, R.; Bovio, G.; Cavallero, A.; Lombardi, G. Prescribed burning and browsing to control tree encroachment in southern european heathlands. For. Ecol. Manag. 2013, 289, 69–77. [Google Scholar] [CrossRef]
- Hall, S.A.; Burke, I.C. Considerations for characterizing fuels as inputs for fire behavior models. For. Ecol. Manag. 2006, 227, 102–114. [Google Scholar] [CrossRef]
- Albrecht, M.A.; Mccarthy, B.C. Effects of prescribed fire and thinning on tree recruitment patterns in central hardwood forests. For. Ecol. Manag. 2006, 226, 88–103. [Google Scholar] [CrossRef]
Forest types | N | Canopy Closure | Diameter at Breast Height (cm) | Height (m) | Crown Width (m) | Small Trees (%) | Medium Trees (%) | Large Trees (%) | Slope(°) | Elevation(m) | Aspect | Tree Age |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FT1 | 45 | 0.8 | 11.8 (4.6) | 10.7 (0.7) | 3.5 (0.3) | 20 (6) | 15 (4) | 65 (16) | 28 (2) | 1507 (20) | NW | 37 (1) |
FT2 | 37 | 0.7 | 16.5 (3.6) | 10.9 (1.1) | 4.1 (0.9) | 0 | 6 (2) | 94 (11) | 30 (1) | 1598 (21) | SW | 30 (2) |
FT3 | 44 | 0.7 | 10.9 (3.2) | 12.7 (2.1) | 2.2 (0.3) | 27 (4) | 4 (1) | 71 (10) | 27 (2) | 1609 (27) | NE | 28 (2) |
FT4 | 48 | 0.6 | 14.6 (4.1) | 10.3 (1.7) | 2.6 (0.5) | 26 (3) | 23 (3) | 51 (12) | 35 (2) | 1509 (32) | SW | 35 (3) |
FT5 | 36 | 0.8 | 12.0 (5.3) | 12.8 (0.9) | 3.2 (1.6) | 17 (2) | 65 (7) | 18 (8) | 34 (1) | 3014 (25) | NE | 30 (1) |
FT6 | 43 | 0.6 | 7.4 (2.9) | 10.5 (0.8) | 1.6 (0.5) | 33 (7) | 33 (9) | 44 (9) | 30 (3) | 1551 (35) | NW | 40 (5) |
Forest types | Active Fuel | Fine Fuel | Medium Fuel | Thick Fuel | Total |
---|---|---|---|---|---|
FT1 | 0.30 (0.07) | 0.04 (0.01) | 0.08 (0.03) | 0.20 (0.07) | 0.62 (0.10) |
FT2 | 0.14 (0.04) | 0.07 (0.01) | 0.00 | 0.13 (0.05) | 0.34(0.08) |
FT3 | 0.63 (0.16) | 0.05 (0.01) | 0.00 | 0.36 (0.14) | 1.04 (0.15) |
FT4 | 0.25 (0.06) | 0.08 (0.01) | 0.18 (0.04) | 0.16 (0.05) | 0.67 (0.07) |
FT5 | 1.11 (0.25) | 0.60 (0.17) | 0.06 (0.01) | 0.57 (0.17) | 2.34 (0.72) |
FT6 | 0.16 (0.04) | 0.02 (0.01) | 0.00 | 0.05 (0.01) | 0.23 (0.07) |
Forest types | Low (U = 5 km·h−1, Mf = 15%) | Moderate (U = 15 km·h−1, Mf = 10%) | Extreme (U = 30 km·h−1, Mf = 5%) | ||||||
---|---|---|---|---|---|---|---|---|---|
S | P | A | S | P | A | S | P | A | |
FT1 | 78 | 22 | 0 | 33 | 38 | 29 | 22 | 45 | 33 |
FT2 | 100 | 0 | 0 | 85 | 15 | 0 | 70 | 30 | 0 |
FT3 | 80 | 20 | 0 | 32 | 47 | 21 | 0 | 25 | 75 |
FT4 | 79 | 21 | 0 | 30 | 35 | 35 | 0 | 39 | 61 |
FT5 | 95 | 5 | 0 | 40 | 45 | 15 | 0 | 8 | 92 |
FT6 | 87 | 13 | 0 | 27 | 65 | 8 | 0 | 17 | 83 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Niu, S. Fuel Classes in Conifer Forests of Southwest Sichuan, China, and Their Implications for Fire Susceptibility. Forests 2016, 7, 52. https://doi.org/10.3390/f7030052
Wang S, Niu S. Fuel Classes in Conifer Forests of Southwest Sichuan, China, and Their Implications for Fire Susceptibility. Forests. 2016; 7(3):52. https://doi.org/10.3390/f7030052
Chicago/Turabian StyleWang, San, and Shukui Niu. 2016. "Fuel Classes in Conifer Forests of Southwest Sichuan, China, and Their Implications for Fire Susceptibility" Forests 7, no. 3: 52. https://doi.org/10.3390/f7030052
APA StyleWang, S., & Niu, S. (2016). Fuel Classes in Conifer Forests of Southwest Sichuan, China, and Their Implications for Fire Susceptibility. Forests, 7(3), 52. https://doi.org/10.3390/f7030052