Germination of Seeds of Melanoxylon brauna Schott. under Heat Stress: Production of Reactive Oxygen Species and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Germination and GSI
3.2. Eletric Condutivity
3.3. Superoxide Anion and Hydrogen Peroxide
3.4. Lipid Peroxidation
3.5. Specific Activity of Antioxidant Enzymes
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Painel Brasileiro de Mudanças Climáticas. Available online: http://memoria.ebc.com.br/agenciabrasil/noticia/2013-12-24/painel-brasileiro-de-mudancas-climaticas-projeta-clima-mais-quente-para-este-seculo (accessed on 21 August 2017).
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, 5th ed.; Instituto Platarum: Nova Odessa, Brazil, 2008; 368p. [Google Scholar]
- Carvalho, F.A.; Nascimento, M.T.; Braga, J.M.A. Estrutura e composição florística do estrato arbóreo de um remanescente de Mata Atlântica submontana no município de Rio Bonito, RJ, Brasil (Mata Rio Vermelho). Rev. Árvore 2007, 31, 717–730. [Google Scholar] [CrossRef]
- Silva, M.S.; Borges, E.E.L.; Leite, H.G.; Corte, V.B. Biometria de frutos e sementes de Melanoxylon brauna Schott. (Fabaceae-Caesalpinioideae). Rev. Cerne 2013, 19, 517–524. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente (MMA). Lista Oficial das Espécies da Flora Brasileira Ameaçadas de Extinção. In Instrução Normativa nº 6, de 23 de Dezembro de 2008; MMA: Brazilia, Brazil, 2014. Available online: http://www.mma.gov.br/estruturas/ascom_boletins/arquivos/8319092008034949.pdf (accessed on 18 October 2016).
- Ataíde, G.M.; Borges, E.E.L.; Gonçalves, J.F.C.; Guimarães, V.M.; Flores, A.V. Alterações fisiológicas durante a hidratação de sementes de Dalbergia nigra ((Vell.) Fr. All. ex Benth.). Cienc. Florest. 2016, 26, 615–625. [Google Scholar] [CrossRef]
- Ferreira, A.G.; Borghetti, F. Germinação: Do Básico ao Aplicado, 1st ed.; Artmed: Porto Alegre, Brazil, 2004; 323p. [Google Scholar]
- Pacheco, M.V.; Matos, V.P.; Ferreira, R.L.C.; Feliciano, A.L.P.; Pinto, K.M.S. Efeito de temperaturas e substratos na germinação de sementes de Myracrodruon urundeuva Fr. All. (Anacardiaceae). Rev. Árvore 2006, 30, 359–367. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Seeds: Physiology of Development and Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; 329p. [Google Scholar]
- Lone, A.B.; Souza, G.R.B.; Oliveira, K.S.; Takahashi, L.A.S.; Faria, R.T. Temperatura e substrato para germinação de sementes de flor-de-maio (Schlumbergera truncata (Haw.) Moran). Rev. Ceres 2010, 57, 367–371. [Google Scholar] [CrossRef]
- Oliveira, F.N.; França, F.D.; Torres, S.B.; Nogueira, N.W.; Freitas, R.M.O. Temperaturas e substratos na germinação de sementes de pereiro-vermelho (Simira gardneriana M.R. Barbosa & Peixoto). Rev. Cienc. Agron. 2016, 47, 658–666. [Google Scholar] [CrossRef]
- Silva, M.L.M.; Alves, E.U.; Bruno, R.L.L.; Santos-Moura, S.S.; Neto, A.P.S. Germinação de sementes de Chorisia glaziovii O. Kuntze submetidas ao estresse hídrico sob diferentes temperaturas. Cienc. Florest. 2016, 26, 999–1007. [Google Scholar] [CrossRef]
- Flores, A.V.; Borges, E.E.L.; Guimarães, V.M.; Ataíde, G.M.; Castro, R.V.O. Germinação de sementes de Melanoxylon brauna schott em diferentes temperaturas. Rev. Árvore 2014, 38, 1147–1154. [Google Scholar] [CrossRef]
- Suzuki, N.; Rizhsky, L.; Liang, H.; Shuman, J.; Mittler, R. Enhanced tolerance to environmental stresses in transgenic plants expressing the transcriptional co-activator MBF1. Plant Physiol. 2005, 139, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Ambuj, B.J.; Rama, S.D.; Mohammad, P. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Heyno, E.; Innocenti, G.; Lemaire, S.; Issakidis-Bourguet, E.; Krieger-Liszkay, A. Putative role of the malate valve enzyme NADP—Malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos. Trans. R. Soc. B 2014, 369, 20130228. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Dubey, R.S. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul. 2011, 19, 1–16. [Google Scholar] [CrossRef]
- Matos, A.C.B.; Borges, E.E.L.; Silva, L.J. Fisiologia da germinação de sementes de Dalbergia nigra (Vell.) Allemão ex Benth. sob diferentes temperaturas e tempos de exposição. Rev. Árvore 2015, 39, 115–125. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Woodstock, L.W. Physiological and biochemical tests for seed vigor. Seed Sci. Technol. 1973, 1, 127–157. [Google Scholar]
- Mohammadi, M.; Karr, A.L. Superoxide anion generation in effective and ineffective soybean root nodules. J. Plant Physiol. 2001, 158, 1023–1029. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The generation of superoxide radical during the autoxidation of ferredoxins. J. Biol. Chem. 1971, 246, 6886–6890. [Google Scholar] [PubMed]
- Boveris, A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 1984, 105, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.C.; Kao, C.H. Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biol. Plant. 2003, 46, 149–152. [Google Scholar] [CrossRef]
- Gay, C.; Gebicki, J.M. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal. Biochem. 2000, 284, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.M.A. Oxidação de lipídios. In Química de Alimentos—Teoria e Prática, 2nd ed.; Editora da Universidade Federal de Viçosa (UFV): Viçosa, Brazil, 1995; p. 22. [Google Scholar]
- Lehner, A.; Mamadou, N.; Poels, P.; Côme, D.; Bailly, C.; Corbineau, F. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. J. Cereal Sci. 2008, 47, 555–565. [Google Scholar] [CrossRef]
- Hodges, P.W.; Butler, J.E.; Mckenzie, D.; Gandevia, S.C. Contraction of the human diaphragm during postural adjustments. J. Physiol. 1997, 505, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Del Longo, O.T.; Gonzales, C.A.; Pastori, G.M.; Trippi, V.S. Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol. 1993, 34, 1023–1028. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Physiol. Plant. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Beuchamp, C.; Fridovick, I. Superoxide dismutase improved as says and as say applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Ramalheiro, J.P.S.C. Contribuição Para a Caracterização Bioquímica do Estado de Maturação de Azeitonas de Diferentes Variedades. Masters Dissertation, Universidade Técnica de Lisboa, Lisbon, Portugal, 2009. Available online: http://hdl.handle.net/10400.5/1940 (accessed on 10 February 2017).
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Hodges, D.M.; Andrews, C.J.; Johnson, D.A.; Hamilton, R.I. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J. Exp. Bot. 1997, 48, 1105–1113. [Google Scholar] [CrossRef]
- Anderson, M.D.; Prasad, T.K.; Stewart, C.R. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotylus of maize seedlings. Plant Physiol. 1995, 109, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Maehley, A.C. Assay of catalases and peroxidases. Methods Enzymol. 1955, 2, 764–775. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT: User’s Guide; Version 9.2; SAS Institute: Cary, NC, USA, 2009; 7869p. [Google Scholar]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Carvalho, N.M.; Nakagawa, J. Sementes: Ciência, Tecnologia e Produção, 4th ed.; FUNEP: Jaboticabal, Brazil, 2000; 588p. [Google Scholar]
- Albrecht, J.M.F.; Alburqueque, M.C.L.F.; Silva, V.S.M. Influência da temperatura e do tipo de substrato na germinação de sementes de cerejeira. Rev. Bras. Semente 1986, 8, 49–55. [Google Scholar] [CrossRef]
- Godoi, S.; Takaki, M. Efeito da temperatura e a participação de fitocromo no controle da germinação de sementes de embaúba. Rev. Bras. Sementes 2005, 27, 87–90. [Google Scholar] [CrossRef]
- Ronchi, C.P.; Almeida, W.L.; Souza, D.S.; Souza, J.M.S.J.; Guerra, A.M.N.M.; Pimenta, P.H.C. Morphophysiological plasticity of plagiotropic branches in response to change in the coffee plant spacing within rows. Semina 2016, 37, 3820–3834. [Google Scholar] [CrossRef]
- Borges, E.E.L.; Ataíde, G.M.; Matos, A.C.B. Micropilar and embryonic events during hydration of Melanoxylon brauna Schott seeds. J. Seed Sci. 2015, 37, 192–201. [Google Scholar] [CrossRef]
- Kärkönen, A.; Kuchitsu, K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 2015, 112, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Prodanovic, O.; Prodanovic, R.; Pristov, J.B.; Mitrovic, A.; Radotic, K. Effect of cadmium stress on antioxidative enzymes during the germination of Serbian spruce (Picea omorika (Panc) Purkyne). Afr. J. Biotechnol. 2012, 11, 11377–11385. [Google Scholar] [CrossRef]
- Cakmak, I.; Pfeiffer, W.; Mcclafferty, B. Review: Biofortification of durum wheat with inc and Iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, D.; Nayyar, H. Comparative response of maize and rice genotypes to heat stress: Status of oxidative stress and antioxidants. Acta Physiol. Plant. 2012, 34, 75–86. [Google Scholar] [CrossRef]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Deuner, C.; Maia, M.S.; Deuner, S.; Almeida, A.S.; Meneghello, G.E. Viabilidade e atividade antioxidante de sementes de genótipo de feijão-miúdo submetidos ao estresse salino. Rev. Bras. Sementes 2011, 33, 711–720. [Google Scholar] [CrossRef]
- Asada, K. Ascorbate peroxidase—A hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 1992, 82, 235–241. [Google Scholar] [CrossRef]
- Sun, W.-H.; Duan, M.; Li, F.; Shu, D.-F.; Yang, S.; Weng, Q.-W. Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol. Plant. 2010, 54, 614–620. [Google Scholar] [CrossRef]
- Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. 1894, 65, 899–911. [Google Scholar] [CrossRef]
- Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 2006, 1758, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Birk, J.; Meyer, M.; Aller, I.; Hansen, H.G.; Odermatt, A.; Dick, T.P.; Meyer, A.J.; Appenzeller-Herzog, C. Endoplasmic reticulum: Reduced and oxidized glutathione revisited. J. Cell Sci. 2013, 126, 1604–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Temperature (°C) | Electric Conductivity | [H2O2] Embryo | |
---|---|---|---|
25 | [H2O2] embryo | −0.82 ** | |
[H2O2] micropyle | −0.85 ** | ||
POX | 0.06 | −0.22 | |
SOD | 0.51 | 0.05 | |
APX | 0.75 ** | −0.59 * | |
CAT | 0.38 | −0.19 | |
35 | [H2O2] embryo | −0.06 | |
[H2O2] micropyle | −0.70 ** | ||
POX | 0.95 *** | 0.24 | |
SOD | −0.47 | −0.47 | |
APX | 0.07 | 0.90 *** | |
CAT | 0.97 *** | −0.26 | |
45 | [H2O2] embryo | 0.36 | |
[H2O2] micropyle | −0.78 ** | ||
POX | −0.80 ** | −0.21 | |
SOD | 0.25 | −0.29 | |
APX | −0.48 | 0.60 * | |
CAT | −0.88 ** | −0.61 * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.M.; Borges, E.E.d.L.e.; Ataíde, G.D.M.; Souza, G.A.d. Germination of Seeds of Melanoxylon brauna Schott. under Heat Stress: Production of Reactive Oxygen Species and Antioxidant Activity. Forests 2017, 8, 405. https://doi.org/10.3390/f8110405
Santos MM, Borges EEdLe, Ataíde GDM, Souza GAd. Germination of Seeds of Melanoxylon brauna Schott. under Heat Stress: Production of Reactive Oxygen Species and Antioxidant Activity. Forests. 2017; 8(11):405. https://doi.org/10.3390/f8110405
Chicago/Turabian StyleSantos, Marcone Moreira, Eduardo Euclydes de Lima e Borges, Glauciana Da Mata Ataíde, and Genaina Aparecida de Souza. 2017. "Germination of Seeds of Melanoxylon brauna Schott. under Heat Stress: Production of Reactive Oxygen Species and Antioxidant Activity" Forests 8, no. 11: 405. https://doi.org/10.3390/f8110405
APA StyleSantos, M. M., Borges, E. E. d. L. e., Ataíde, G. D. M., & Souza, G. A. d. (2017). Germination of Seeds of Melanoxylon brauna Schott. under Heat Stress: Production of Reactive Oxygen Species and Antioxidant Activity. Forests, 8(11), 405. https://doi.org/10.3390/f8110405