Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Presentation
2.2. Data-Driven Techniques
2.2.1. Artificial Neural Network
2.2.2. Support Vector Machine
2.2.3. Adaptive Neuro-Fuzzy Inference System
2.2.4. Generalized Regression Neural Network
2.2.5. Extreme Learning Machine
2.2.6. Group Method of Data Handling
2.3. Model Development and Software Availability
2.4. Model Evaluation
3. Results
3.1. GPP Modeling Using the Machine Learning Methods
3.2. R Modeling Using the Machine Learning Methods
3.3. NEE Modeling Using the Machine Learning Methods
3.4. ET Modeling Using the Machine Learning Methods
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mitchell, S.R.; Emanuel, R.E.; McGlynn, B.L. Land–atmosphere carbon and water flux relationships to vapor pressure deficit, soil moisture, and stream flow. Agric. For. Meteorol. 2015, 208, 108–117. [Google Scholar] [CrossRef]
- Medlyn, B.; De Kauwe, M. Biogeochemistry: Carbon dioxide and water use in forests. Nature 2013, 499, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Jensen, R.; Herbst, M.; Friborg, T. Direct and indirect controls of the interannual variability in atmospheric CO2 exchange of three contrasting ecosystems in Denmark. Agric. For. Meteorol. 2017, 233, 12–31. [Google Scholar] [CrossRef]
- Thomas, C.K.; Law, B.E.; Irvine, J.; Martin, J.G.; Pettijohn, J.C.; Davis, K.J. Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J. Geophys. Res. Biogeosci. 2009, 114, G04006. [Google Scholar] [CrossRef]
- Tan, Z.H.; Zhang, Y.P.; Deng, X.B.; Song, Q.H.; Liu, W.J.; Deng, Y.; Tang, J.W.; Liao, Z.Y.; Zhao, J.F.; Song, L. Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9 year eddy flux time series. J. Geophys. Res. Atmos. 2015, 120, 464–479. [Google Scholar] [CrossRef]
- Amthor, J.S.; Chen, J.M.; Clein, J.S.; Frolking, S.E.; Goulden, M.L.; Grant, R.F.; Kimball, J.S.; King, A.W.; McGuire, A.D.; Nikolov, N.T.; et al. Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements. J. Geophys. Res. Atmos. 2001, 106, 33623–33648. [Google Scholar] [CrossRef]
- Zhao, F.; Zeng, N.; Asrar, G.; Friedlingstein, P.; Ito, A.; Jain, A.; Kalnay, E.; Kato, E.; Koven, C.D.; Poulter, B.; et al. Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: A multimodel analysis. Biogeosciences 2016, 13, 5121–5137. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed]
- De Vries, W. Forest ecology: Nutrients trigger carbon storage. Nat. Clim. Change 2014, 4, 425–426. [Google Scholar] [CrossRef]
- Balshi, M.S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Kicklighter, D.W.; Melillo, J. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob. Change Biol. 2009, 15, 1491–1510. [Google Scholar] [CrossRef]
- Hoffman, F.M.; Randerson, J.T.; Arora, V.K.; Bao, Q.; Cadule, P.; Ji, D.; Jones, C.D.; Kawamiya, M.; Khatiwala, S.; Lindsay, K. Causes and implications of persistent atmospheric carbon dioxide biases in earth system models. J. Geophys. Res. Biogeosci. 2014, 119, 141–162. [Google Scholar] [CrossRef]
- Raczka, B.M.; Davis, K.J.; Huntzinger, D.; Neilson, R.P.; Poulter, B.; Richardson, A.D.; Xiao, J.; Baker, I.; Ciais, P.; Keenan, T.F. Evaluation of continental carbon cycle simulations with North American flux tower observations. Ecol. Monogr. 2013, 83, 531–556. [Google Scholar] [CrossRef] [Green Version]
- Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Barr, A.; Black, T.A.; Chen, G.; Chen, J.M.; et al. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis. J. Geophys. Res. Biogeosci. 2010, 115, G00H05. [Google Scholar] [CrossRef]
- Keenan, T.F.; Carbone, M.S.; Reichstein, M.; Richardson, A.D. The model-data fusion pitfall: Assuming certainty in an uncertain world. Oecologia 2011, 167, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Trudinger, C.M.; Enting, I.G. A review of applications of model–data fusion to studies of terrestrial carbon fluxes at different scales. Agric. For. Meteorol. 2009, 149, 1829–1842. [Google Scholar] [CrossRef]
- Michener, W.K.; Jones, M.B. Ecoinformatics: Supporting ecology as a data-intensive science. Trends Ecol. Evol. 2012, 27, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Schoeman, D.S.; Sydeman, W.J.; Brander, K.; Buckley, L.B.; Burrows, M.; Duarte, C.M.; Moore, P.J.; Pandolfi, J.M.; Poloczanska, E.; et al. Quantitative approaches in climate change ecology. Glob. Change Biol. 2011, 17, 3697–3713. [Google Scholar] [CrossRef]
- Olden, J.D.; Lawler, J.J.; Poff, N.L. Machine learning methods without tears: A primer for ecologists. Q. Rev. Boil. 2008, 83, 171–193. [Google Scholar] [CrossRef]
- Cherkassky, V.; Krasnopolsky, V.; Solomatine, D.P.; Valdes, J. Computational intelligence in earth sciences and environmental applications: Issues and challenges. Neural Netw. 2006, 19, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Londhe, S.; Charhate, S. Comparison of data-driven modelling techniques for river flow forecasting. Hydrol. Sci. J. 2010, 55, 1163–1174. [Google Scholar] [CrossRef]
- Jordan, M.; Mitchell, T. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Langley, P. The changing science of machine learning. Mach. Learn. 2011, 82, 275–279. [Google Scholar] [CrossRef]
- Qin, Z.; Su, G.-L.; Zhang, J.-E.; Ouyang, Y.; Yu, Q.; Li, J. Identification of important factors for water vapor flux and CO2 exchange in a cropland. Ecol. Model. 2010, 221, 575–581. [Google Scholar] [CrossRef]
- Schmidt, A.; Wrzesinsky, T.; Klemm, O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks. Bound. Layer Meteorol. 2007, 126, 389–413. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.; et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116, G00J07. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; RC6denbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Brender, P.; Ciais, P.; Piao, S.; Mahecha, M.D.; Chevallier, F.; Reichstein, M.; Ottlé, C.; Maignan, F.; Arain, A.; et al. State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecol. Model. 2012, 246, 11–25. [Google Scholar] [CrossRef]
- Abramowitz, G.; Pitman, A.; Gupta, H.; Kowalczyk, E.; Wang, Y. Systematic bias in land surface models. J. Hydrometeorol. 2007, 8, 989–1001. [Google Scholar] [CrossRef]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R. Artificial neural networks approach in evapotranspiration modeling: A review. Irrig. Sci. 2011, 29, 11–25. [Google Scholar] [CrossRef]
- Traore, S.; Luo, Y.; Fipps, G. Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages. Agric. Water Manag. 2016, 163, 363–379. [Google Scholar] [CrossRef]
- Kisi, O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 2015, 528, 312–320. [Google Scholar] [CrossRef]
- Lima, A.R.; Cannon, A.J.; Hsieh, W.W. Forecasting daily streamflow using online sequential extreme learning machines. J. Hydrol. 2016, 537, 431–443. [Google Scholar] [CrossRef]
- Dariane, A.B.; Azimi, S. Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using anfis models. Hydrol. Sci. J. 2016, 61, 585–600. [Google Scholar] [CrossRef]
- Mekanik, F.; Imteaz, M.A.; Talei, A. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Clim. Dyn. 2015, 46, 3097–3111. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Casanova-Mateo, C.; Pastor-Sánchez, A.; Sánchez-Girón, M. Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization—Extreme Learning Machine approach. Sol. Energy 2014, 105, 91–98. [Google Scholar] [CrossRef]
- Osório, G.J.; Matias, J.C.O.; Catalão, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J. Prediction of long-term monthly air temperature using geographical inputs. Int. J. Climatol. 2014, 34, 179–186. [Google Scholar] [CrossRef]
- Partal, T.; Cigizoglu, H.K.; Kahya, E. Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data. Stoch. Environ. Res. Risk Assess. 2015, 29, 1317–1329. [Google Scholar] [CrossRef]
- Zha, T.; Barr, A.G.; van der Kamp, G.; Black, T.A.; McCaughey, J.H.; Flanagan, L.B. Interannual variation of evapotranspiration from forest and grassland ecosystems in Western Canada in relation to drought. Agric. For. Meteorol. 2010, 150, 1476–1484. [Google Scholar] [CrossRef]
- Swanson, R.V.; Flanagan, L.B. Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem. Agric. For. Meteorol. 2001, 108, 165–181. [Google Scholar] [CrossRef]
- Krishnan, P.; Black, T.A.; Barr, A.G.; Grant, N.J.; Gaumont-Guay, D.; Nesic, Z. Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. J. Geophys. Res. 2008, 113, D09109. [Google Scholar] [CrossRef]
- Barr, A.G.; Black, T.A.; Hogg, E.H.; Griffis, T.J.; Morgenstern, K.; Kljun, N.; Theede, A.; Nesic, Z. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob. Change Biol. 2007, 13, 561–576. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study. Environ. Model. Softw. 1998, 13, 179–191. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Özesmi, S.L.; Tan, C.O.; Özesmi, U. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol. Model. 2006, 195, 83–93. [Google Scholar] [CrossRef]
- Çevik, A.; Kurtoğlu, A.E.; Bilgehan, M.; Gülşan, M.E.; Albegmprli, H.M. Support vector machines in structural engineering: A review. J. Civ. Eng. Manag. 2015, 21, 261–281. [Google Scholar] [CrossRef]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hamidi, O.; Poorolajal, J.; Sadeghifar, M.; Abbasi, H.; Maryanaji, Z.; Faridi, H.R.; Tapak, L. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theor. Appl. Climatol. 2015, 119, 723–731. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Jang, J.-S. Anfis: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM 2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Ladlani, I.; Houichi, L.; Djemili, L.; Heddam, S.; Belouz, K. Modeling daily reference evapotranspiration (ET0) in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): A comparative study. Meteorol. Atmos. Phys. 2012, 118, 163–178. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Ding, S.; Xu, X.; Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 2014, 25, 549–556. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 2016, 542, 603–614. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 1971, 1, 364–378. [Google Scholar] [CrossRef]
- Müller, J.A.; Ivachnenko, A.G.; Lemke, F. GMDH algorithms for complex systems modelling. Math. Comput. Model. Dyn. Syst. 1998, 4, 275–316. [Google Scholar] [CrossRef]
- Dou, X.; Chen, B.; Black, T.; Jassal, R.; Che, M. Impact of nitrogen fertilization on forest carbon sequestration and water loss in a chronosequence of three douglas-fir stands in the Pacific Northwest. Forests 2015, 6, 1897–1921. [Google Scholar] [CrossRef]
- Moffat, A.M.; Beckstein, C.; Churkina, G.; Mund, M.; Heimann, M. Characterization of ecosystem responses to climatic controls using artificial neural networks. Glob. Change Biol. 2010, 16, 2737–2749. [Google Scholar] [CrossRef]
- Yang, F.; Ichii, K.; White, M.A.; Hashimoto, H.; Michaelis, A.R.; Votava, P.; Zhu, A.X.; Huete, A.; Running, S.W.; Nemani, R.R. Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens. Environ. 2007, 110, 109–122. [Google Scholar] [CrossRef]
- Moffat, A.M.; Papale, D.; Reichstein, M.; Hollinger, D.Y.; Richardson, A.D.; Barr, A.G.; Beckstein, C.; Braswell, B.H.; Churkina, G.; Desai, A.R.; et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 2007, 147, 209–232. [Google Scholar] [CrossRef]
- Xiao, J.; Zhuang, Q.; Baldocchi, D.D.; Law, B.E.; Richardson, A.D.; Chen, J.; Oren, R.; Starr, G.; Noormets, A.; Ma, S.; et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric. For. Meteorol. 2008, 148, 1827–1847. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Zhang, H.; Wang, J.; Black, T.A.; Amiro, B.D.; Bohrer, G.; Bolstad, P.; Coulter, R.; Rahman, A.F.; et al. Estimating landscape net ecosystem exchange at high spatial–temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens. Environ. 2014, 141, 90–104. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hollinger, D.Y.; Burba, G.G.; Davis, K.J.; Flanagan, L.B.; Katul, G.G.; William Munger, J.; Ricciuto, D.M.; Stoy, P.C.; Suyker, A.E.; et al. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric. For. Meteorol. 2006, 136, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Stoy, P.C.; Katul, G.G.; Siqueira, M.B.S.; Juang, J.-Y.; Novick, K.A.; Uebelherr, J.M.; Oren, R. An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric. For. Meteorol. 2006, 141, 2–18. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Glob. Change Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef]
- Tamura, H.; Kondo, T. Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution prediction. Int. J. Syst. Sci. 1980, 11, 1095–1111. [Google Scholar] [CrossRef]
- Onwubolu, G.C. Design of hybrid differential evolution and group method of data handling networks for modeling and prediction. Inf. Sci. 2008, 178, 3616–3634. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.A.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme learning machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Laaboudi, A.; Mouhouche, B.; Draoui, B. Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. Int. J. Biometeorol. 2012, 56, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Abbot, J.; Marohasy, J. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 2014, 138, 166–178. [Google Scholar] [CrossRef]
- Meng, X.; Yin, M.; Ning, L.; Liu, D.; Xue, X. A threshold artificial neural network model for improving runoff prediction in a karst watershed. Environ. Earth Sci. 2015, 74, 5039–5048. [Google Scholar] [CrossRef]
- Kalteh, A.M. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput. Geosci. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.J. Practical markov chain monte carlo. Stat. Sci. 1992, 7, 473–483. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 14, 382–401. [Google Scholar]
- Zhang, X.; Liang, F.; Srinivasan, R.; Van Liew, M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45, W02403. [Google Scholar] [CrossRef]
- Chitsazan, N.; Nadiri, A.A.; Tsai, F.T.C. Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging. J. Hydrol. 2015, 528, 52–62. [Google Scholar] [CrossRef]
Period | Variable | Xmean | Xmax | Xmin | Xsd | Xku | Xsk | CCGPP | CCR | CCNEE | CCET |
---|---|---|---|---|---|---|---|---|---|---|---|
Training | Ta | 1.87 | 26.37 | −35.31 | 12.68 | 2.27 | −0.36 | 0.83 | 0.81 | −0.56 | 0.79 |
Rn | 6.59 | 21.39 | −4.28 | 6.27 | 2.04 | 0.51 | 0.74 | 0.59 | −0.70 | 0.82 | |
Rh | 74.05 | 100.00 | 24.56 | 17.24 | 2.52 | −0.57 | −0.38 | −0.24 | 0.45 | −0.43 | |
Ts | 3.31 | 15.41 | −9.18 | 5.00 | 2.04 | 0.56 | 0.87 | 0.94 | −0.46 | 0.80 | |
GPP | 2.16 | 7.94 | −0.06 | 2.44 | 1.91 | 0.66 | 1.00 | 0.90 | −0.78 | 0.91 | |
R | 1.71 | 6.88 | 0.00 | 1.69 | 2.63 | 0.96 | 0.90 | 1.00 | −0.44 | 0.82 | |
NEE | −0.45 | 3.90 | −4.12 | 1.16 | 2.96 | −0.78 | −0.78 | −0.44 | 1.00 | −0.71 | |
ET | 0.81 | 4.05 | −0.03 | 0.83 | 2.99 | 1.02 | 0.91 | 0.82 | −0.71 | 1.00 | |
Validation | Ta | −0.49 | 23.47 | −33.01 | 14.07 | 2.12 | −0.41 | 0.83 | 0.80 | −0.64 | 0.81 |
Rn | 6.71 | 21.90 | −3.86 | 6.49 | 1.89 | 0.39 | 0.69 | 0.51 | −0.72 | 0.74 | |
Rh | 70.07 | 98.86 | 28.29 | 15.90 | 2.52 | −0.47 | −0.32 | −0.15 | 0.45 | −0.35 | |
Ts | 3.12 | 14.12 | −3.67 | 5.05 | 1.93 | 0.60 | 0.88 | 0.95 | −0.56 | 0.84 | |
GPP | 2.43 | 9.41 | −0.15 | 2.82 | 1.87 | 0.67 | 1.00 | 0.91 | −0.85 | 0.93 | |
R | 1.79 | 7.28 | 0.04 | 1.78 | 2.82 | 1.01 | 0.91 | 1.00 | −0.55 | 0.87 | |
NEE | −0.64 | 3.01 | −5.20 | 1.42 | 2.57 | −0.77 | −0.85 | −0.55 | 1.00 | −0.76 | |
ET | 0.91 | 4.01 | −0.01 | 0.95 | 2.93 | 0.97 | 0.93 | 0.87 | −0.76 | 1.00 | |
Testing | Ta | −0.97 | 22.81 | −29.72 | 13.73 | 1.70 | −0.08 | 0.87 | 0.84 | −0.64 | 0.84 |
Rn | 7.16 | 20.98 | −2.72 | 5.38 | 2.31 | 0.49 | 0.68 | 0.49 | −0.72 | 0.76 | |
Rh | 67.80 | 96.54 | 29.62 | 13.88 | 2.70 | −0.07 | 0.00 | 0.16 | 0.24 | −0.09 | |
Ts | 2.79 | 12.37 | −4.15 | 4.87 | 1.84 | 0.63 | 0.88 | 0.94 | −0.52 | 0.80 | |
GPP | 2.29 | 8.42 | −0.05 | 2.74 | 1.88 | 0.69 | 1.00 | 0.90 | −0.81 | 0.93 | |
R | 1.58 | 6.77 | −0.26 | 1.84 | 2.54 | 0.96 | 0.90 | 1.00 | −0.48 | 0.83 | |
NEE | −0.71 | 3.02 | −4.43 | 1.33 | 2.99 | −0.86 | −0.81 | −0.48 | 1.00 | −0.78 | |
ET | 0.86 | 3.79 | −0.04 | 0.91 | 2.59 | 0.92 | 0.93 | 0.83 | −0.78 | 1.00 |
Model | Training | Validation | Testing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | |
ANN | 0.9491 | 0.9491 | 0.5500 | 0.3633 | 0.9565 | 0.9248 | 0.7722 | 0.5063 | 0.9622 | 0.9427 | 0.6548 | 0.4220 |
GRNN | 0.9705 | 0.9703 | 0.4199 | 0.2461 | 0.9507 | 0.9186 | 0.8034 | 0.4880 | 0.9443 | 0.9254 | 0.7473 | 0.4364 |
ELM | 0.9119 | 0.9119 | 0.7234 | 0.5254 | 0.9289 | 0.8897 | 0.9350 | 0.6667 | 0.9312 | 0.9098 | 0.8218 | 0.5800 |
ANFIS | 0.9460 | 0.9460 | 0.5661 | 0.3588 | 0.9521 | 0.9224 | 0.7845 | 0.4878 | 0.9570 | 0.9341 | 0.7024 | 0.4394 |
SVM | 0.9553 | 0.9552 | 0.5156 | 0.3091 | 0.9556 | 0.9242 | 0.7750 | 0.4936 | 0.9574 | 0.9361 | 0.6915 | 0.4290 |
GMDH | 0.9041 | 0.9040 | 0.7549 | 0.5962 | 0.9157 | 0.8809 | 0.9715 | 0.7308 | 0.9323 | 0.8894 | 0.9100 | 0.6691 |
Model | GPP | R | NEE | ET |
---|---|---|---|---|
ANN | 1 | 4 | 1 | 4 |
GRNN | 4 | 5 | 3 | 5 |
ELM | 5 | 3 | 5 | 3 |
ANFIS | 3 | 1 | 4 | 2 |
SVM | 2 | 2 | 2 | 1 |
GMDH | 6 | 6 | 6 | 6 |
Model | Training | Validation | Testing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | |
ANN | 0.9373 | 0.9366 | 0.4250 | 0.2656 | 0.9421 | 0.9210 | 0.5000 | 0.3209 | 0.9489 | 0.9303 | 0.4848 | 0.3377 |
GRNN | 0.9637 | 0.9636 | 0.3223 | 0.1895 | 0.9360 | 0.9128 | 0.5254 | 0.3416 | 0.9413 | 0.9293 | 0.4880 | 0.3423 |
ELM | 0.9297 | 0.9297 | 0.4477 | 0.2874 | 0.9411 | 0.9280 | 0.4775 | 0.3061 | 0.9422 | 0.9310 | 0.4821 | 0.3289 |
ANFIS | 0.9391 | 0.9391 | 0.4167 | 0.2619 | 0.9418 | 0.9241 | 0.4902 | 0.3084 | 0.9498 | 0.9393 | 0.4522 | 0.3199 |
SVM | 0.9414 | 0.9413 | 0.4089 | 0.2334 | 0.9425 | 0.9257 | 0.4850 | 0.3102 | 0.9471 | 0.9347 | 0.4692 | 0.3385 |
GMDH | 0.9277 | 0.9277 | 0.4541 | 0.2958 | 0.9348 | 0.9203 | 0.5023 | 0.3343 | 0.9307 | 0.9099 | 0.5511 | 0.3969 |
Model | Training | Validation | Testing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | |
ANN | 0.7962 | 0.7961 | 0.5238 | 0.3552 | 0.8482 | 0.7946 | 0.6429 | 0.4370 | 0.8352 | 0.7784 | 0.6270 | 0.4399 |
GRNN | 0.8819 | 0.8399 | 0.4641 | 0.3668 | 0.8037 | 0.7492 | 0.7103 | 0.5436 | 0.8053 | 0.7665 | 0.6436 | 0.4484 |
ELM | 0.6754 | 0.6754 | 0.6610 | 0.4944 | 0.7611 | 0.6937 | 0.7850 | 0.5716 | 0.7216 | 0.6700 | 0.7651 | 0.5640 |
ANFIS | 0.7745 | 0.7745 | 0.5509 | 0.3724 | 0.8302 | 0.7904 | 0.6494 | 0.4321 | 0.7891 | 0.7322 | 0.6893 | 0.4922 |
SVM | 0.8130 | 0.8128 | 0.5019 | 0.3139 | 0.8406 | 0.7990 | 0.6358 | 0.4313 | 0.8175 | 0.7673 | 0.6426 | 0.4746 |
GMDH | 0.6191 | 0.6187 | 0.7164 | 0.5445 | 0.6701 | 0.6145 | 0.8806 | 0.6726 | 0.6692 | 0.6043 | 0.8379 | 0.5712 |
Model | Training | Validation | Testing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | RMSE | MAE | |
ANN | 0.9172 | 0.9171 | 0.2387 | 0.1659 | 0.9206 | 0.8743 | 0.3378 | 0.2160 | 0.9105 | 0.8759 | 0.3210 | 0.2169 |
GRNN | 0.9188 | 0.9180 | 0.2375 | 0.1667 | 0.9139 | 0.8746 | 0.3374 | 0.2171 | 0.9065 | 0.8739 | 0.3236 | 0.2193 |
ELM | 0.9095 | 0.9095 | 0.2495 | 0.1768 | 0.9186 | 0.8761 | 0.3353 | 0.2233 | 0.9100 | 0.8780 | 0.3183 | 0.2114 |
ANFIS | 0.9152 | 0.9152 | 0.2416 | 0.1671 | 0.9163 | 0.8768 | 0.3344 | 0.2106 | 0.9109 | 0.8817 | 0.3134 | 0.2129 |
SVM | 0.9259 | 0.9254 | 0.2265 | 0.1480 | 0.9171 | 0.8766 | 0.3347 | 0.2081 | 0.9120 | 0.8775 | 0.3190 | 0.2129 |
GMDH | 0.8920 | 0.8920 | 0.2726 | 0.1950 | 0.9032 | 0.8617 | 0.3543 | 0.2379 | 0.8950 | 0.8480 | 0.3553 | 0.2551 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, X.; Yang, Y. Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem. Forests 2017, 8, 498. https://doi.org/10.3390/f8120498
Dou X, Yang Y. Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem. Forests. 2017; 8(12):498. https://doi.org/10.3390/f8120498
Chicago/Turabian StyleDou, Xianming, and Yongguo Yang. 2017. "Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem" Forests 8, no. 12: 498. https://doi.org/10.3390/f8120498
APA StyleDou, X., & Yang, Y. (2017). Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem. Forests, 8(12), 498. https://doi.org/10.3390/f8120498