Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis
Abstract
:1. Introduction
- The ecological function of forests (providing ecosystem services such as biodiversity) [24].
2. Materials and Methods
2.1. Study Area
2.2. Image Preprocessing
2.3. Fractal Analysis
3. Results
3.1. Spatial Evolution of Forest Covered Areas
3.2. Fractal Dimension of the Forested, Deforested and Reforested Areas (DSurf-dil0)
3.3. Dilated Fractal Dimension (Ddil3)
3.4. Fractal Dimension of the Dilated Forest Areas (Dsurf-dil3)
3.5. Fractal Dimension of the Dilated Forest Areas Borders (DBord-dil3)
4. Discussion
4.1. Forest Changes in Romania
4.2. Usage of Fractal Analysis for Quantification of Forest Changes
- We show that fractal analysis can offer valuable textural information about the spatial organizations of forest resources. Also, the fractal analysis highlights the spatial effects of deforestation on forest resources.
- Ddil3 was shown to be a useful index that indicates the degree of compactness of forested areas. Ddil3 showed higher values than Dsurf-dil0 only in the situation of densely forested areas and with a great degree of compactness. Otherwise, for areas less forested, deforested or reforested, Ddil3 was less than Dsurf-dil0.
- The difference between Dsurf-dil3 and Dsurf-dil0 can be utilized as an index of the forest area complexity organization. This indicates that the value of Dsurf-dil3 − Dsurf-dil0 increases for more heterogeneous, fragmented and scattered forest areas. If forest areas were compact and organized in big clusters, the difference between Dsurf-dil3 and Dsurf-dil0 tended to be lower.
- DBord-dil3 offered important textural information about deforestation and reforestation. The more compact the deforestation or the reforestation, the lower was the value of DBord-dil3.
- The fractal analysis highlighted morpho-structural and textural differences between forested, deforested and reforested areas grouped by DRs or counties. Differences were observed between landscapes dominated by mountains and high hills (more forested and compact organization) as compared to landscapes of lower plains or hills (less forested, more fragmented, with many small and isolated clusters). Also, obvious differences were found between morpho-structural and textural patterns of forested areas (more compact) as a function of deforested and reforested areas (more isolated points, patches randomly distributed). At the level of DRs, areas of deforestation not followed by a sufficient reforestation show a change from a compact structure of forest areas to a chaotic structure with multiple free spaces that are non-forested pixels.
4.3. Perspectives for Sustainable Forest Management
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sarris, A.H.; Doucha, T.; Mathijs, E. Agricultural restructuring in central and eastern Europe: Implications for competitiveness and rural development. Eur. Revi. Agric. Econ. 1999, 26, 305–329. [Google Scholar] [CrossRef]
- Fraser, E.D.G.; Stringer, L.C. Explaining agricultural collapse: Macro-forces, micro-crises and the emergence of land use vulnerability in southern Romania. Glob. Environ. Chang. Hum. Policy Dimens. 2009, 19, 45–53. [Google Scholar] [CrossRef]
- Pintilii, R.D.; Papuc, R.M.; Draghici, C.C.; Simion, A.G.; Ciobotaru, A.-M. The impact of deforestation on the structural dynamics of economic profile in the most affected territorial systems in Romania. In Proceeding of 15th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 18–24 June 2015; Stef92 Technology Ltd.: Sofia, Bulgaria, 2015; pp. 567–573. [Google Scholar]
- Launiainen, S.; Futter, M.N.; Ellison, D.; Clarke, N.; Finer, L.; Hogbom, L.; Lauren, A.; Ring, E. Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian Case. Ambio 2014, 43, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.; Kapos, V. Reducing greenhouse gas emissions from deforestation and forest degradation: Global land-use implications. Science 2008, 320, 1454–1455. [Google Scholar] [CrossRef] [PubMed]
- Bellassen, V.; Luyssaert, S. Managing forests in uncertain times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 3016–3034. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounaridis, D.; Fotakis, D. Assessing riparian land-uses/vegetation cover along the Nestos river in Greece. Fresenius Environ. Bull. 2011, 20, 3217–3225. [Google Scholar]
- Gounaridis, D.; Zaimes, G.N.; Koukoulas, S. Quantifying spatio-temporal patterns of forest fragmentation in Hymettus Mountain, Greece. Comput. Environ. Urban Syst. 2014, 46, 35–44. [Google Scholar] [CrossRef]
- Malek, Z.; Scolobig, A.; Schröter, D. Understanding Land Cover Changes in the Italian Alps and Romanian Carpathians Combining Remote Sensing and Stakeholder Interviews. Land 2014, 3, 52–73. [Google Scholar] [CrossRef]
- Papuc, R.M.; Pintilii, R.D.; Andronache, I.; Peptenatu, D.; Dobrea, C.R. Assessment of the economic pressure on forest ecosystems in Romania. In Proceeding of 15th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 18–24 June 2015; Stef92 Technology Ltd.: Sofia, Bulgaria, 2015; pp. 441–446. [Google Scholar]
- Parviainen, J. Virgin and natural forests in the temperate zone of Europe. For. Snow Landsc. Res. 2005, 79, 9–18. [Google Scholar]
- Pintilii, R.-D.; Andronache, I.; Diaconu, D.C.; Dobrea, R.C.; Zeleňáková, M.; Fensholt, R.; Peptenatu, D.; Draghici, C.-C.; Ciobotaru, A.-M. Using Fractal Analysis in Modeling the Dynamics of Forest Areas and Economic Impact Assessment: Maramureș County, Romania, as a Case Study. Forests 2017, 8, 25. [Google Scholar] [CrossRef]
- van der Sluis, T.; Pedroli, B.; Kristensen, S.B.P.; Cosor, G.L.; Pavlis, E. Changing land use intensity in Europe—Recent processes in selected case studies. Land Use Policy 2016, 57, 777–785. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Niţă, M.A. The Impact of National and EU Legislative Framework on the Illegal Exploitation of Forests in Romania. A Managerial Cause—Effect Approach. Procedia Econ. Financ. 2015, 2, 784–789. [Google Scholar] [CrossRef]
- National Institute of Statistics, Statistics research SILV 1—National Forest Reources. Available online: http://statistici.insse.ro/shop/index.jsp?page=tempo2&lang=ro&context=47 (accessed on 11 February 2017).
- Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.; Schardt, M.; Verkerk, P.J. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For. Ecol. Manag. 2010, 260, 252–261. [Google Scholar] [CrossRef]
- State of Europe’s Forests 2007. Available online: http://www.eea.europa.eu/data-and-maps/data/external/state-of-europes-forests-2007 (accessed on 11 February 2017).
- Malek, Z.; Boerboom, L.; Glade, T. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzău Subcarpathians, Romania. Environ. Manag. 2015, 56, 1228–1243. [Google Scholar] [CrossRef] [PubMed]
- Romanescu, G.; Nistor, I. The effects of the July 2005 catastrophic inundations in the Siret River’s Lower Watershed, Romania. Nat. Hazards 2011, 57, 345–368. [Google Scholar] [CrossRef]
- Cojoc, G.M.; Romanescu, G.; Tirnovan, A. Exceptional floods on a developed river: Case study for the Bistrita River from the Eastern Carpathians (Romania). Nat. Hazards 2015, 77, 1421–1451. [Google Scholar] [CrossRef]
- Ioana-Toroimac, G. Inventory of Long-Term Braiding Activity at a Regional Scale as a Tool for Detecting Alterations to a Rivers’ Hydromorphological State: A Case Study for Romania’s South-Eastern Subcarpathians. Environ. Manag. 2016, 58, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Verberk, P.J.; Zanchi, G.; Lindner, M. Trade-Offs Between Forest Protection and Wood Supply in Europe. Environ. Manag. 2014, 53, 1085–1094. [Google Scholar]
- Kuemmerle, T.; Muller, D.; Griffiths, P.; Rusu, M. Land use change in Southern Romania after the collapse of socialism. Reg. Environ. Chang. 2009, 9, 1–12. [Google Scholar] [CrossRef]
- Stringer, L.C.; Harris, A. Land degradation in Dolj County, Southern Romania: Environmental changes, impacts and responses. Land Degrad. Dev. 2014, 25, 17–28. [Google Scholar] [CrossRef]
- Olofsson, P.; Kuemmerle, T.; Griffiths, P.; Knorn, J.; Baccini, A.; Gancz, V.; Blujdea, V.; Houghton, R.A.; Abrudan, I.V.; Woodcock, C.E. Carbon implications of forest restitution in post-socialist Romania. Environ. Res. Lett. 2011, 6, 4. [Google Scholar] [CrossRef]
- Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P. Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [Google Scholar] [CrossRef]
- Niţă, M.A. Good Governance and Forest Exploitation in Romania. A Comparative Analysis. Procedia Econ. Financ. 2015, 32, 795–800. [Google Scholar] [CrossRef]
- Verburg, P.H.; de Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.G.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 12. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ. 2010, 118, 199–214. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Yang, Z.Q.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Perzanowski, K.; Kruhlov, I. Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecol. Appl. 2007, 17, 1279–1295. [Google Scholar]
- Sun, J.; Southworth, J. Remote Sensing-Based Fractal Analysis and Scale Dependence Associated with Forest Fragmentation in an Amazon Tri-National Frontier. Remote Sens. 2013, 5, 454–472. [Google Scholar] [CrossRef]
- Andronache, I.; Ahammer, H.; Jelinek, H.F.; Peptenatu, D.; Ciobotaru, A.-M.; Draghici, C.-C.; Pintilii, R.D.; Simion, A.G.; Teodorescu, C. Fractal analysis for studying the evolution of forests. Chaos Solitons Fractals 2016, 91, 310–318. [Google Scholar] [CrossRef]
- Ciobotaru, A.-M.; Peptenatu, D.; Andronache, I.; Simion, A.G. Fractal characteristics of the afforested, deforested and reforested areas in Suceava county, Romania. In Proceeding of International Scientific Conferences on Earth & Geo Sciences—Sgem Vienna Green Sessions 2016, Viena, Austria, 2–5 November 2016; Stef92 Technology Ltd.: Sofia, Bulgaria, 2016; pp. 445–452. [Google Scholar]
- Pintilii, R.D.; Andronache, I.; Simion, A.G.; Draghici, C.-C.; Peptenatu, D.; Ciobotaru, A.-M.; Dobrea, R.C.; Papuc, R.M. Determining forest fund evolution by fractal analysis (Suceava-Romania). Urbanism Archit. Constr. 2016, 7, 31–42. [Google Scholar]
- Law No. 315/2004 Regarding Regional Development in Romania. Available online: http://legislatie.just.ro/Public/DetaliiDocument/53040 (accessed on 21 December 2016).
- Russel, D.; Hanson, J.; Ott, E. Dimension of strange attractors. Phys. Rev. Lett. 1980, 45, 1175–1178. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Ruifrok, A.C.; Johnston, D.A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 2001, 23, 291–299. [Google Scholar] [PubMed]
- Tannier, C.; Pumain, D. Fractals in urban geography: A theoretical outline and an empirical example. Cybergeo Eur. J. Geogr. 2005. [Google Scholar] [CrossRef]
- Tannier, C.; Thomas, I. Defining and Characterizing Urban Boundaries: A Fractal Analysis of Theoretical Cities and Belgian Cities. Comput. Environ. Urban Syst. 2013, 41, 234–248. [Google Scholar] [CrossRef]
- Di Ieva, A.; Grizzi, F.; Ceva-Grimaldi, G.; Russo, C.; Gaetani, P.; Aimar, E.; Levi, D.; Pisano, P.; Tancioni, F.; Nicola, G.; et al. Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J. Anat. 2007, 211, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Gonzato, G. A practical implementation of the box counting algorithm. Comput. Geosci. 1998, 24, 95–100. [Google Scholar] [CrossRef]
- Benguigui, L.; Czamanski, D.; Marinov, M.; Portugali, Y. When and where is a city fractal? Environ. Plan. B. Plan. Des. 2000, 27, 507–519. [Google Scholar] [CrossRef]
- Ferreira, R.C.; de Matos, P.S.; Adam, R.L.; Leite, N.J.; Metze, K. Application of the Minkowski–Bouligand Fractal Dimension for the Differential Diagnosis of Thyroid Follicular Neoplasias. Cell. Oncol. 2006, 28, 331–333. [Google Scholar] [PubMed]
- Thomas, I.; Tannier, C.; Frankhauser, P. Is there a link between fractal dimensions and other indicators of the built-up environment at a regional level? Cybergeo Eur. J. Geogr. 2008. [Google Scholar] [CrossRef]
- National Institute of Statistics, Statistics research SILV 1—National Forest Resources. Available online: http://colectaredate.insse.ro/metadata/viewStatisticalResearch.htm?locale=ro&researchId=2362 (accessed on 20 December 2016).
- Munteanu, C.; Nita, M.D.; Abrudan, L.V.; Radeloff, V.C. Historical forest management in Romania is imposing strong legacies on contemporary forests and their management. For. Ecol. Manag. 2016, 361, 179–193. [Google Scholar] [CrossRef]
- Munteanu, C.; Kuemmerle, T.; Keuler, N.S.; Muller, D.; Balazs, P.; Dobosz, M.; Griffiths, P.; Halada, L.; Kaim, D.; Kiraly, G.; et al. Legacies of 19th century land use shape contemporary forest cover. Glob. Environ. Chang. Hum. Policy Dimens. 2015, 34, 83–94. [Google Scholar] [CrossRef]
- Veen, P.; Fanta, J.; Raev, I.; Biris, I.A.; de Smidt, J.; Maes, B. Virgin forests in Romania and Bulgaria: Results of two national inventory projects and their implications for protection. Biodivers. Conserv. 2010, 19, 1805–1819. [Google Scholar] [CrossRef]
- Hanski, I. Landscape fragmentation, biodiversity loss and the societal response—The longterm consequences of our use of natural resources may be surprising and unpleasant. Embo Rep. 2005, 6, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.C.; Chen, X.Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.; Woo, N.; Torres, J.; Moll-Rocek, J.; Ehammer, A.; Collins, M.; Jepsen, M.; Fensholt, R. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data. Environ. Res. Lett. 2015, 10, 034014. [Google Scholar] [CrossRef]
Satellite images | Resolution | Longitude | Latitude | Paths | Rows |
---|---|---|---|---|---|
LANDSAT 7 ETM+ | 30 m | 50°0’ N | 20°18’ E | 188 | 25 |
LANDSAT 7 ETM+ | 30 m | 50°0’ N | 30°18’ E | 181 | 25 |
LANDSAT 7 ETM+ | 30 m | 39°60’ N | 20°18’ E | 185 | 32 |
LANDSAT 7 ETM+ | 30 m | 39°60’ N | 30°18’ E | 179 | 32 |
DRs/Parameter | W | Center | N-W | S-W Oltenia | N-E | S-E Dobrogea | S-Muntenia | Bucharest-Ilfov | Romania |
---|---|---|---|---|---|---|---|---|---|
FullDRs (km2) | 32,028 | 34,100 | 34,159 | 29,212 | 36,850 | 35,762 | 34,489 | 1811 | 238,391 |
F2000 (km2) | 13,468 | 14,719 | 12,327 | 9179 | 12,432 | 7061 | 7729 | 268 | 77,183 |
%F2000 | 42.1 | 43.2 | 36.1 | 31.4 | 33.7 | 19.7 | 22.4 | 14.8 | 32.4 |
F2012 (km2) | 13,413 | 14,724 | 12,094 | 9182 | 12,122 | 7019 | 7617 | 266 | 76,438 |
%F2012 | 41.9 | 43.2 | 35.4 | 31.4 | 32.9 | 19.6 | 22.1 | 14.7 | 32.1 |
Def 2000–2012 (km2) | 195 | 581 | 505 | 140 | 599 | 98 | 194 | 3 | 2315 |
Ref 2000–2012 (km2) | 140 | 586 | 272 | 143 | 289 | 56 | 82 | 1 | 1570 |
DR/FD | W | Center | N-W | S-W Oltenia | N-E | S-E Dobrogea | S-Muntenia | Bucharest-Ilfov | Romania |
---|---|---|---|---|---|---|---|---|---|
Forested areas | |||||||||
DSurf-dil0 | 1.63 | 1.62 | 1.58 | 1.58 | 1.54 | 1.44 | 1.43 | 1.14 | 1.50 |
Deforested areas | |||||||||
DSurf-dil0 | 1.05 | 1.15 | 1.08 | 0.98 | 0.99 | 0.83 | 0.86 | 0.53 | 0.93 |
Reforested areas | |||||||||
DSurf-dil0 | 1.00 | 1.16 | 1.05 | 0.98 | 0.91 | 0.77 | 0.80 | 0.40 | 0.88 |
DR/FD | W | Center | N-W | S-W Oltenia | N-E | S-E Dobrogea | S-Muntenia | Bucharest-Ilfov | Romania |
---|---|---|---|---|---|---|---|---|---|
Forested areas | |||||||||
Ddil3 | 1.73 | 1.72 | 1.64 | 1.58 | 1.53 | 1.45 | 1.40 | 1.04 | 1.51 |
Deforested areas | |||||||||
Ddil3 | 0.56 | 0.70 | 0.67 | 0.46 | 0.56 | 0.41 | 0.46 | 0.17 | 0.50 |
Reforested areas | |||||||||
Ddil3 | 0.36 | 0.64 | 0.42 | 0.39 | 0.40 | 0.30 | 0.31 | 0.06 | 0.36 |
DR/FD | W | Center | N-W | S-W Oltenia | N-E | S-E Dobrogea | S-Muntenia | Bucharest-Ilfov | Romania |
---|---|---|---|---|---|---|---|---|---|
Forested areas | |||||||||
DSurf-dil3 | 1.70 | 1.69 | 1.68 | 1.69 | 1.66 | 1.57 | 1.58 | 1.39 | 1.62 |
Deforested areas | |||||||||
DSurf-dil3 | 1.42 | 1.50 | 1.42 | 1.36 | 1.35 | 1.22 | 1.25 | 0.99 | 1.32 |
Reforested areas | |||||||||
DSurf-dil3 | 1.43 | 1.50 | 1.42 | 1.36 | 1.34 | 1.22 | 1.25 | 0.99 | 1.31 |
DR/FD | W | Center | N-W | S-W Oltenia | N-E | S-E Dobrogea | S-Muntenia | Bucharest-Ilfov | Romania |
---|---|---|---|---|---|---|---|---|---|
Forested areas | |||||||||
DBord-dil3 | 1.29 | 1.29 | 1.32 | 1.33 | 1.35 | 1.28 | 1.31 | 1.22 | 1.30 |
Deforested areas | |||||||||
DBord-dil3 | 1.30 | 1.35 | 1.30 | 1.26 | 1.24 | 1.13 | 1.15 | 0.91 | 1.21 |
Reforested areas | |||||||||
DBord-dil3 | 1.32 | 1.33 | 1.31 | 1.28 | 1.21 | 1.13 | 1.18 | 0.84 | 1.20 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andronache, I.; Fensholt, R.; Ahammer, H.; Ciobotaru, A.-M.; Pintilii, R.-D.; Peptenatu, D.; Drăghici, C.-C.; Diaconu, D.C.; Radulović, M.; Pulighe, G.; et al. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis. Forests 2017, 8, 54. https://doi.org/10.3390/f8030054
Andronache I, Fensholt R, Ahammer H, Ciobotaru A-M, Pintilii R-D, Peptenatu D, Drăghici C-C, Diaconu DC, Radulović M, Pulighe G, et al. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis. Forests. 2017; 8(3):54. https://doi.org/10.3390/f8030054
Chicago/Turabian StyleAndronache, Ion, Rasmus Fensholt, Helmut Ahammer, Ana-Maria Ciobotaru, Radu-Daniel Pintilii, Daniel Peptenatu, Cristian-Constantin Drăghici, Daniel Constantin Diaconu, Marko Radulović, Giuseppe Pulighe, and et al. 2017. "Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis" Forests 8, no. 3: 54. https://doi.org/10.3390/f8030054
APA StyleAndronache, I., Fensholt, R., Ahammer, H., Ciobotaru, A. -M., Pintilii, R. -D., Peptenatu, D., Drăghici, C. -C., Diaconu, D. C., Radulović, M., Pulighe, G., Azihou, A. F., Toyi, M. S., & Sinsin, B. (2017). Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis. Forests, 8(3), 54. https://doi.org/10.3390/f8030054