Armillaria Pathogenesis under Climate Changes
Abstract
:1. Introduction
2. The Pathogen
3. The Rhizomorphs
4. The Hosts
5. The Microbial Soil Community
6. The Interactions with Insect Pests
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Keeling, C.D.; Whorf, T.P.; Wahlen, M.; van der Plicht, J. Inter annual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 1995, 375, 666–670. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPPC Fourth Assessment Report in Summary for Policymakers; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Bazzaz, F.A. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. Syst. 1990, 21, 167–196. [Google Scholar] [CrossRef]
- Climate Change 2001. Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change; Watson, R.T., Core Writing Team, Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Nösberger, J.; Ort, D.R. Food for thought: Lower-Than expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Brzeziecki, B.; Kienast, F.; Wildi, O. Modeling potential impact of climate change on the spatial distribution of zonal forest communities in Switzerland. J. Veg. Sci. 1995, 6, 257–268. [Google Scholar] [CrossRef]
- Wargo, P.M.; Parker, J.; Houston, D.R. Starch content in roots of defoliated sugar maple. For. Sci. 1972, 18, 203–204. [Google Scholar]
- Jung, T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For. Pathol. 2009, 39, 77–94. [Google Scholar]
- Trocha, L.K.; Weiser, E.; Robakowski, P. Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings. Mycorrhiza 2016, 26, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013, 197, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Williams, W.M.A. Response of microbial communities to water stress in irrigated and drought-prone tallgrass prairie soils. Soil Biol. Biochem. 2007, 39, 2750–2757. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Niklaus, P.A.; Hungate, B.A. A meta-analysis of responses of soil biota to global change. Oecologia 2011, 165, 553–565. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, K.M.; Pold, G.; Topcuoglu, B.D.; van Diepen, L.T.A.; Varney, R.M.; Blanchard, J.L.; Melillo, J.; Frey, S.D. Long-Term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 2015, 6, 104. [Google Scholar]
- Pettersson, M.; Baath, E. Temperature-Dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiol. Ecol. 2003, 45, 13–21. [Google Scholar] [CrossRef]
- Bradford, M.A.; Davies, C.A.; Frey, S.D.; Maddox, T.R.; Melillo, J.M.; Mohan, J.E.; Reynolds, J.F.; Treseder, K.K.; Wallenstein, M.D. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 2008, 11, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, S.B.; van Groenigen, K.J.; Allison, S.D.; Hungate, B.A.; Schwartz, E.; Koch, G.W.; Kolka, R.K.; Dijkstra, P. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang. 2014, 4, 903–906. [Google Scholar] [CrossRef]
- Sierota, Z. Wpływ grzybów rozkładających korzenie drzew leśnych na uwalnianie CO2 - próba waloryzacji [Effect of fungi decomposing roots of forest trees on CO2 release—An attempt of evaluation]. Sylwan 2012, 156, 128–136. (In Polish) [Google Scholar]
- Lindner, M.; Garcia-Gonzalo, J.; Kolström, M.; Green, T.; Reguera, R. Impacts of Climate Change on European Forests and Options for Adaptation No. AGRI-2007-G4–06; Report to the European Commission Directorate-General for Agriculture and Rural Development: Brussels, Belgium.
- La Porta, N.; Capretti, P.; Thomsen, I.M.; Kasanen, R.; Hietala, A.M.; Von Weissenberg, K. Forest pathogens with higher damage potential due to climate change in Europe. Can. J. Plant Pathol. 2008, 30, 177–195. [Google Scholar] [CrossRef]
- Tubby, K.V.; Webber, J.F. Pests and diseases threatening urban trees under a changing climate. Forestry 2010, 83, 451–459. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Kwasna, H. The susceptibility of forest trees to Armillaria root rot. Sylwan 2008, 148, 25–33. (In Polish) [Google Scholar]
- Brockerhoff, E.G.; Jactel, H.; Goldarazena, A.; Berndt, L.; Bain, J. Risk assessment of European pests of Pinus radiata; Client Report No. 12216; ENSIS: Rotorua, New Zealand, 2006. [Google Scholar]
- Rishbeth, J. Effects of soil temperature and atmosphere on growth of Armillaria rhizomorphs. Trans. Brit. Mycol. Soc. 1978, 70, 213–220. [Google Scholar] [CrossRef]
- Keca, N. Characteristics of Armillaria species development and their growth at different temperatures. Bull. Fac. Forstry 2005, 91, 149–162. (In Serbian) [Google Scholar] [CrossRef]
- Rind, B.; Losel, D.M. Effect of nutrients and temperature on the growth of Armillaria mellea and other fungi. Indus J. Biol. Sci. 2005, 2, 326–331. [Google Scholar]
- Guillaumin, J.J.; Legrand, P. Armillaria root rot. In Infectious Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CABI: Oxfordshire, UK, 2005; Chapter 8; pp. 159–177. [Google Scholar]
- Pastor, J.; Post, W.M. Influence of Climate, Soil Moisture, and Succession on Forest Carbon and Nitrogen Cycles. Biogeochemistry 1986, 2, 3–27. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees; Springer-Verlag: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Witomski, P. Zmiany Wybranych właściwości fizycznych i Chemicznych Drewna Sosny Zwyczajnej (Pinus sylvestris L.) pod Wpływem Rozkładu Białego i Brunatnego; SGGW: Warsaw, Poland, 2008. (In Polish) [Google Scholar]
- Rayner, A.D.M.; Boddy, L. Fungal Decomposition of Wood. Its Biology and Ecology; J. Wiley & Sons Ltd.: Chichester, Sussex, UK, 1988. [Google Scholar]
- Sierota, Z. Dry weight loss of wood after the inoculation of Scots pine stumps with Phlebiopsis gigamtea. Eur. J. For. Path. 1997, 27, 179–185. [Google Scholar] [CrossRef]
- Hintikka, V. Notes on the ecology of Armillaria mellea in Finland. Karstenia 1974, 14, 12–31. [Google Scholar]
- Redfern, D.B. Infection of Picea sitchensis and Pinus contorta stumps by basidiospores of Heterobasidion annosum. Forest Pathol. 1982, 12, 11–25. [Google Scholar] [CrossRef]
- Lech, P.; Żółciak, A. Wzrost sadzonek sosny zwyczajnej i rozwój ryzomorf opienki ciemnej w warunkach podwyższonej koncentracji CO2 w powietrzu. (Growth of Scots pine seedlings and Armillaria ostoyae rhizomorphs under elevated air CO2, concentration conditions). Leś. Pr. Bad. 2006, 4, 17–34. (In Polish) [Google Scholar]
- Wells, J.M.; Boddy, L. Effect of temperature on wood decay and translocation of soil-derived phosphorus in mycelial cord systems. New Phytol. 1995, 129, 289–297. [Google Scholar] [CrossRef]
- Austin, E. Wood Decomposition in a Warmer World. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2013. [Google Scholar]
- Dang, C.K.; Schindler, M.; Chauvet, E.; Gessner, M.O. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 2009, 90, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, N.B.; Kim, M.; Hanna, J.; Richardson, B.A.; Smith, A.L.; Maffei, H. Predicting potential impacts of climate change on Armillaria root disease in the inland northwestern USA. Phythopathology 2009, 99, S65. [Google Scholar]
- Kliejunas, J.T.; Geils, B.; Glaeser, J.M.; Goheen, E.M.; Hennon, P.; Kim, M.-S.; Kope, H.; Stone, J.; Sturrock, R.; Frankel, S. Climate and Forest Diseases of Western North America: A Literature Review; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2008; p. 36. [Google Scholar]
- Ramsfield, T.D.; Bentz, B.J.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef]
- Worrall, J. Armillaria root disease. In The Plant Health Instructor; The American Phytopathological Society (APS): St. Paul, MN, USA, 2004. [Google Scholar] [CrossRef]
- Battles, J.J.; Robards, T.; Das, A.; Waring, K.; Gilless, J.K.; Biging, G.; Schurr, F. Climate change impacts on forest growth and tree mortality: A data-driven modeling study in a mixed-conifer forest of the Sierra Nevada. Clim. Chang. 2008, 87, S193–S213. [Google Scholar] [CrossRef]
- Ayres, M.P.; Lombardero, M.J. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 2000, 262, 263–286. [Google Scholar] [CrossRef]
- Lau, J.A.; Lennon, J.T. Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. New Phytol. 2011, 192, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Horst, C.P.; Zee, P.C. Eco-Evolutionary dynamics in plant–soil feedbacks. Funct. Ecol. 2016, 30, 1062–1072. [Google Scholar]
- Hood, I.A.; Redfern, D.B.; Kile, G.A. Armillaria in planted host. In Armillaria Root Diseases; Agricultural Handbook No. 691; Show, C.G., III, Kile, G.A., Eds.; U.S.D.A. Forest Service: Washington, DC, USA, 1991; pp. 122–149. [Google Scholar]
- Worrall, J.J.; Sullivan, K.F.; Harrington, T.C.; Steimel, J.P. Incidence, host relations and population structure of Armillaria ostoyae in Colorado campgrounds. For. Ecol. Manag. 2004, 192, 191–206. [Google Scholar] [CrossRef]
- Narayanasamy, P. Detection of Fungal Pathogens in Plants. In Microbial Plant Pathogens-Detection and Disease Diagnosis: Fungal Pathogens; Springer Science+Business Media: Dordrecht, The Netherlands, 2011; Volume 1. [Google Scholar]
- McDonald, G.I.; Martin, N.E.; Harvey, A.E. Armillaria in the Northern Rockies: Pathogenicity and Host Susceptibility on Pristine and Disturbed Areas; USDA, FS Intermountain Research Station: Ogden, UT, USA, 1987. [Google Scholar]
- Van der Putten, W.H.; Klironomos, J.N.; Wardle, D.A. Microbial ecology of biological invasions. ISME J. 2007, 1, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Manabe, S.; Spelman, M.J.; Stouffer, R.J. Transient responses of a coupled ocean atmosphere model to gradual changes of atmospheric CO2. Part II: Seasonal response. J. Clim. 1992, 5, 105–126. [Google Scholar] [CrossRef]
- Loretto, F.; Burdsall, H.; Tirro, A. Armillaria infection and water stress influence gas-exchange properties of mediterranean trees. Hort Sci. 1993, 28, 222–224. [Google Scholar]
- Hadfield, J.S.; Goheen, D.J.; Filip, G.M.; Schmitt, C.L.; Harvey, R.D. Root Diseases in Oregon and Washington Conifers - R6-FPM-250-86; U.S.D.A. Forest Service: Portland, OR, USA, 1986. [Google Scholar]
- Mullen, J.; Hagan, A. Alabama Cooperative Extension System. Available online: http://www.aces.edu/pubs/docs/A/ANR-0907/ANR-0907.pdf (accessed 15 October 2004).
- Szewczyk, W.; Kwaśna, H.; Behnke-Borowczyk, J. Armillaria population in flood-plain forest of natural pedunculate oak showing oak decline. Pol. J. Environ. Stud. 2016, 25, 1253–1262. [Google Scholar] [CrossRef]
- Żółciak, A.; Lech, P.; Małecka, M.; Sierota, Z. Opieńkowa zgnilizna korzeni a stan zdrowotny drzewostanów świerkowych w Beskidach. PAU 2009, 11, 61–72. (In Polish) [Google Scholar]
- Lamoure, D.; Guillaumin, J.J. The life cycle of the Armillaria mellea complex. Euro. J. For. Pathol. 1985, 15, 288–293. [Google Scholar] [CrossRef]
- Maynard, D.G.; Paré, D.; Thiffault, E.; Lafleur, B.; Hogg, K.E.; Kishchuk, B. How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ. Rev. 2014, 22, 161–178. [Google Scholar] [CrossRef]
- Żółciak, A. Występowanie grzybów z rodzaju Armillaria (Fr.: Fr.) Staude w kompleksach leśnych w Polsce (The occurence of Armillaria (Fr.: Fr.) Staude in forests stands in Poland). Pr. Inst. Bad. Leśn. Ser. A 1999, 888, 21–40. (In Polish) [Google Scholar]
- Gregory, S.C.; Rishbeth, J.; Shaw, C.G., III. Pathogenicity and Virulence. In Armillaria Root Disease; Agricultural Handbook No. 691; Show, C.G., III, Kile, G.A., Eds.; U.S.D.A. Forest Service: Washington, DC, USA, 1991; pp. 76–87. [Google Scholar]
- Guillaumin, J.J.; Mohammed, C.; Anselmi, N.; Courtecuisse, R.; Gregory, S.C.; Holdenrieder, O.; Intini, M.; Lung, B.; Marxmüller, H.; Morrison, D.; et al. Geographical distribution and ecology of the Armillaria species in western Europe. Eur. J. For. Path. 1993, 23, 321–341. [Google Scholar] [CrossRef]
- Fox, R.T.V. Pathogenicity. In Armillaria Root Rot: Biology, and Control of Honey Fungus Section 3: Pathology; Fox, R.T.V., Ed.; Intercept Ltd.: Andover, UK, 2000; pp. 113–136. [Google Scholar]
- Cleary, M.; van der Kamp, B.J.; Morrison, D.J. Pathogenicity and virulence of Armillaria sinapina and host response to infection in Douglas-fir, western hemlock and western redcedar in the southern interior of British Columbia. For. Patolh. 2012, 42, 481–491. [Google Scholar]
- Ross-Davis, A.L.; Stewart, J.E.; Hanna, J.W.; Kim, M.S.; Knaus, B.J.; Cronn, R.; Rai, H.; Richardson, B.A.; McDonald, G.I.; Klopfenstein, N.B. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host-pathogen interface. For. Patolh. 2013, 43, 468–477. [Google Scholar] [CrossRef]
- Sicoli, G.; Annese, V.; de Gioia, T.; Luisi, N. Armillaria pathogenicity tests on oaks in southern Italy. J. Plant Path. 2002, 84, 107–111. [Google Scholar]
- Lygis, V.; Vasiliauskas, R.; Larsson, K.; Stenlid, J. Wood-Inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand. J. For. Res. 2005, 20, 337–346. [Google Scholar] [CrossRef]
- Moricca, S.; Ginetti, B.T.B.; Scanu, B.; Franceschini, A.; Ragazzi, A. Endemic and emerging pathogens threatening cork oak trees: Management options for conserving a unique forest ecosystem. Plant Dis. 2016, 100, 2184–2193. [Google Scholar] [CrossRef]
- Żółciak, A.; Bouteville, R.-J.; Tourvieille, J.; Roeckel-Drevet, P.; Nicolas, P.; Guillaumin, J.-J. Occurrence of Armillaria ectypa (Fr.) Lamoure in peat bogs of the Auvergne—the reproduction system of the species. Cryptogam. Mycol. 1997, 18, 299–313. [Google Scholar]
- Brazee, N.J.; Ortiz-Santana, B.; Banik, M.T.; Lindner, D.L. Armillaria altimontana, a new species from the western interior of North America. Mycologia 2012, 104, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Pegler, D.N. Taxonomy, Nomenclature and Description of Armillaria. In Armillaria Root Rot: Biology and Control of Honey Fungus, Section 2: Diversity; Fox, R.T.V., Ed.; Intercept Ltd.: Andover, UK, 2000; pp. 81–93. [Google Scholar]
- Kim, M.-S.; Klopfenstein, N.B.; Hanna, J.W.; McDonald, G.I. Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers. For. Pathol. 2006, 36, 145–164. [Google Scholar] [CrossRef]
- Garett, S.D. Rhizomorph behavior in Armillaria mellea (Fr.) Quel., III Saprophytic colonization of woody substrates in soil. Ann. Bot. 1960, 24, 275–285. [Google Scholar]
- Morrison, D.J. Rhizomorph growth, habit, saprophytic ability and virulence of 15 Armillaria species. For. Pathol. 2004, 34, 15–26. [Google Scholar] [CrossRef]
- Leach, R. Biological control and ecology of Armillaria mellea (Vahl) Fr. T. Brit. Mycol. Soc. 1939, 23, 320–329. [Google Scholar] [CrossRef]
- Raabe, R.D.; Trujillo, E.E. Armillaria mellea in Hawaii. Plant Dis. Rep. 1963, 47, 776. [Google Scholar]
- Redfern, D.B.; Filip, G.M. Inoculum and Infection. In Armillaria Root Disease; Agricultural Handbook No. 691; Show, C.G., III, Kile, G.A., Eds.; U.S.D.A. Forest Service: Washington, DC, USA, 1991; pp. 48–61. [Google Scholar]
- Kile, G.A. Behaviour of Armillaria in some Eucalyptus obliqua – Eucalyptus regnans forests in Tasmania and its role in their decline. Eur. J. For. Pathol. 1980, 10, 278–296. [Google Scholar] [CrossRef]
- Morrison, D.J. Studies on the Biology of Armillaria mellea. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1972. [Google Scholar]
- Redfern, D.B. Growth and behaviour of Armillaria mellea rhizomorphs in soil. Trans. Br. Mycol. Soc. 1973, 61, 569–581. [Google Scholar] [CrossRef]
- Rykowski, K. Niektóre troficzne uwarunkowania patogeniczności Armillaria mellea (Vahl) Quèl. w uprawach sosnowych. Prace Inst. Bad. Leśn. 1985, 640, 1–140. (In Polish) [Google Scholar]
- Morrison, D.J. Vertical distribution of Armillaria mellea rhizomorphs in soil. Trans. Brit. Mycol. Soc. 1976, 66, 393–399. [Google Scholar] [CrossRef]
- Morrison, D.J.; Thomson, A.J.; Chu, D.; Peet, F.G.; Sahota, T.S. Variation in isozyme patterns of esterase and polyphenol oxidase among isolates of Armillaria ostoyae from British Columbia. Can. J. Plant Pathol. 1989, 11, 229–234. [Google Scholar] [CrossRef]
- Mihail, J.D.; Bruhn, J.N. Foraging behaviour of Armillaria rhizomorph systems. Mycol. Res. 1995, 109, 1195–1207. [Google Scholar] [CrossRef]
- Mihail, J.D.; Obert, M.; Bruhn, J.N. Fractal geometry of diffuse mycelia and rhizomorphs of Armillaria species. Mycol. Res. 1995, 99, 81–88. [Google Scholar] [CrossRef]
- Żółciak, A.; Sierota, Z. Zabiegi hodowlane a zagrożenie drzewostanów przez patogeny korzeni. Prace Inst. Bad. Leśn. seria B 1997, 31, 71–84. (In Polish) [Google Scholar]
- Żółciak, A. Przydatność herbicydu Roundup do ograniczania rozwoju ryzomorf opieniek w uprawach leśnych.). Prace Inst. Bad. Leśn. Seria A 2001, 910, 65–83. (In Polish) [Google Scholar]
- Żółciak, A. Refraining the regeneration of Armillaria rhizomorphs using Trichoderma. Bulletin of the Polish Academy of Sciences. Biol. Sci. 2001, 49, 265–273. [Google Scholar]
- Baumgartner, K.; Coetzee, M.P.A.; Hoffmeister, D. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Path. 2011, 12, 515–534. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J. Effects of soil organic matter on rhizomorph growth by A. mellea. Trans. Brit. Mycol. Soc. 1982, 78, 201–207. [Google Scholar] [CrossRef]
- Singh, P. Armillaria root rot: Influence of soil nutrients and pH on the susceptibility of conifer species to the disease. Eur. J. For. Pathol. 1983, 13, 92–101. [Google Scholar] [CrossRef]
- Mihail, J.D.; Bruhn, J.N.; Leininger, T.D. The effects of moisture and oxygen availability on rhizomorphs generation by Armillaria tabescens in comparison with A. gallica and A. mellea. Mycol. Res. 2002, 106, 697–704. [Google Scholar] [CrossRef]
- Kessler, W.; Moser, S. Moglichkeiten der Vorbeugung gegen Schaden durch Hallimasch in Kiefernkulturen. Beitr. fur die Forstwirtsch. 1974, 8, 86–89. [Google Scholar]
- Rishbeth, J. The growth rate of Armillaria mellea. Trans. Brit. Mycol. Soc. 1986, 51, 575–586. [Google Scholar] [CrossRef]
- Pearce, M.H.; Malajczuk, N. Factors affecting the growth of Armillaria luteobubalina rhizomorphs in soil. Mycol. Res. 1990, 94, 38–48. [Google Scholar] [CrossRef]
- Blenis, P.V.; Mugala, M.S.; Hiratsuka, Y. Soil affects Armillaria root rot of lodgepole pine. Can. J. For. Res. 1989, 19, 1638–1641. [Google Scholar] [CrossRef]
- Singh, P. Armillaria root rot: Influence of soil nutrients and pH on the susceptibility of conifer species to the disease. For. Pathol. 2007, 13, 92–101. [Google Scholar] [CrossRef]
- Prescott, L.M.; Harley, J.P.; Klein, D.A. Human Diseases Caused by Bacteria, Part X Microbial Diseases and Their Control. In Microbiology, 5th ed.; the McGraw-Hill Companies: Columbus, OH, USA, 2002; pp. 900–940. [Google Scholar]
- Mallett, K.I.; Meynard, D.G. Armillaria root disease, stand characteristics, and soil properties in young lodgepole pine. For. Ecol. Manag. 1998, 105, 37–44. [Google Scholar] [CrossRef]
- Lech, P.; Żółciak, A. Uwarunkowania występowania opieńkowej zgnilizny korzeni w lasach Beskidu Żywieckiego. Leś. Pr. Bad. 2006, 2, 33–49. (In Polish) [Google Scholar]
- Schinner, F.; Concin, R. Carbon dioxide fixation by wood rotting fungi. Eur. J. For. Pathol. 1981, 11, 120–123. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Drigo, B.; Kowalchuk, C.A.; van Veen, J.A. Climate change goes underground: Effects of elevated atmospheric CO2 on microbal community structure and activities in the rhizosphere. Biol. Fert. Soils 2008, 44, 667–679. [Google Scholar] [CrossRef]
- Sallas, L.; Kainulainen, P.; Utrainen, J.; Holopainen, T.; Holopainen, J.K. The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine (Pinus sylvestris L.) seedlings. Glob. Chang. Biol. 2001, 7, 303–311. [Google Scholar] [CrossRef]
- Fleischmann, F.; Raidl, W.F.; Oβwald, W.F. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ. Pollut. 2010, 158, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, M.; Sikora, K.; Nowakowska, J.A.; Kubiak, K.; Oszako, T. Effects of CO2 enhancement on beech (Fagus sylvatica L.) seedling root rot due to Phytophthora plurivora and Phytophthora cactorum. Folia For. Pol. Ser. A 2014, 56, 149–156. [Google Scholar] [CrossRef]
- Oszako, T.; Sikora, K.; Borys, M.; Kubiak, K.; Tkaczyk, M. Phytophthora quercina infections in elevated CO2 concentrations. Folia For. Pol. Ser. A 2016, 58, 131–141. [Google Scholar] [CrossRef]
- Grzywacz, A.; Ważny, J. The impact of industrial air pollutants on the occurrence of several important pathogenic fungi of forest trees in Poland. Eur. J. For. Pathol. 1973, 3, 129–141. [Google Scholar] [CrossRef]
- Jancarik, U. Uyskyt drevokaznych hub u Kourem poskozovane oblasti Krusnych hor. Lesnictvi 1962, 1, 677–692. [Google Scholar]
- Kude1a, M.; Novakova, E. Lesni skudci a skody sveri v lesich poskozovanych Kourem. Lesnictvi 1962, 6, 493–502. [Google Scholar]
- Schaeffer, T.C.; Hedgecock, G.G. Injury to Northwestern Forest Trees by Sulfur Dioxide from Smelters; U.S. Forest Service Tech. Bull. No. 1117; U.S.D.A.: Washington, DC, USA, 1955; pp. 1–49. [Google Scholar]
- Domanski, S.; Kowalski, S.; Kowalski, T. Fungi; occurring in forests injured by industrial air pollutants in the upper Silesia and Krakow industrial regions Poland: IV Higher fungi causing root diseases within forest stands not rebuilt in the years 1971–1975. Acta Agrar. Silv. Ser. Silv. 1976, 16, 61–74. [Google Scholar]
- Horak, M.; Tesche, M. Einfluss von SO2 auf die Infektione von Fichtensamlingen durch Armillaria ostoyae. Forstwiss. Cbl. 1993, 112, 93–97. [Google Scholar] [CrossRef]
- Wargo, P.M.; Carey, A.C. Effects of metals and pH on in vitro growth of Armillaria ostoyae and other root and butt rot fungi of red spruce. For. Pathol. 2001, 41, 5–24. [Google Scholar] [CrossRef]
- Sicoli, G.; Luisi, N.; Manicone, R.P. Armillaria species occurring in southern Italy. In Proceedings of the Eighth International Conference on Root and Butt Rots, Wik, Sweden and Haikko, Finland, 9–16 August 1993; Johansson, M., Stenlid, J., Eds.; Swedish University of Agriculture Sciences: Uppsala, Sweden, 1994; pp. 383–387. [Google Scholar]
- Cruickshank, M.G.; Morrison, D.J.; Punja, Z.K. Incidence of Armillaria species in precommercial thinning stumps and spread of Armillaria ostoyae to adjacent Douglas-fir-trees. Can. J. For. Res. 1997, 27, 481–490. [Google Scholar] [CrossRef]
- Lygis, V. Root Rot in North-Temperate Forest Stands: Biology, Management and Communities of Associated Fungi. Ph.D. Thesis, Swedish University of Agricultural Sciences, Forestry Faculty, Uppsala, Sweden, 2005. [Google Scholar]
- Dumas, M.T.; Boyonoski, N.W. Scanning electron microscopy of mycoparasitism of Armillaria rhizomorphs by species Trichoderma. Eur. J. For. Pathol. 1992, 22, 379–383. [Google Scholar] [CrossRef]
- De Wit, P.J.G.M. Plant Pathogenic Fungi and Oomycetes. In Principles of Plant-Microbe Interactions; Lugtenberg, B., Ed.; Springer Int. Publisher: Cham, Switzerland, 2015; pp. 79–90. [Google Scholar]
- Riffle, J.W. Effect of two mycophagus nematodes on Armillaria mellea root rot of Pinus ponderosa seedlings. Plant Dis. Rep. 1973, 57, 355–357. [Google Scholar]
- Cayrol, J.C.; Dubos, B.; Guillaumin, J.-J. Etude preliminare in vitro de l’agressivite de quelque nematodes mycophages vis-à-vis de Trichoderma viride Pers., T. polysporum (Link. Ex Pers.) Rifai et Armillaria mellea (Vahl) Karst. Ann. Phytopathol. 1978, 10, 177–185. [Google Scholar]
- Weller, D.M. Biological control of soilborne plant pathogens in the rhizosphere. Ann. Rev. Phytopathol. 1988, 26, 379–407. [Google Scholar] [CrossRef]
- Sa, Q.; Wang, Y.; Li, W.; Zhang, L.; Sun, Y. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid. Plant Cell Rep. 2003, 22, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Yang, T.; Zeng, Y.; Hu, Z. Expression analysis of the gastrodianin gene ga4B in an achlorophyllous plant Gastrodia elata Bl. Plant Cell Rep. 2007, 26, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Dawson, L.A.; Macdonald, C.A.; Buckland, S.M. Impact of biotic and abiotic interaction on soil microbial communities and functions: A field study. Appl. Soil Ecol. 2009, 41, 239–248. [Google Scholar] [CrossRef]
- Celar, F. Competition for amonium and nitrate forms of nitrogen between some phytopathogenic and antagonistic soil fungi. Biol. Control 2003, 28, 19–24. [Google Scholar] [CrossRef]
- Watanabe, N.; Lewis, J.A.; Papavizas, G.C. Influence of nitrogen fertilizers on growth, spore production and germination, and biological potential of Trichoderma and Gliocladium. J. Phtopathol. 1987, 120, 337–346. [Google Scholar] [CrossRef]
- Zogg, G.P.; Zak, D.R.; Ringelberg, D.B.; Macdonald, N.W.; Pregitzer, K.S.; White, D.C. Compositional and functional shifts in microbial communities because of soil warming. Soil Sci. Soc. Am. J. 1997, 61, 475–481. [Google Scholar] [CrossRef]
- Karhu, K.; Auffret, M.D.; Dungait, J.A.J.; Hopkins, D.W.; Prosser, J.I.; Singh, B.K.; Subke, J.A.; Wookey, P.A.; Ågren, G.I.; Sebastià, M.T.; et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 2014, 513, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Anderson, O.R. Soil respiration, climate change and the role of microbial communities. Protist 2011, 162, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Giardina, C.P.; Litton, C.M.; Crow, S.E.; Asner, G.P. Warming-Related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat. Clim. Chang. 2014, 4, 822–827. [Google Scholar] [CrossRef]
- Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.D.; Lee, J.; Melillo, J.M.; Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 2013, 3, 395–398. [Google Scholar] [CrossRef]
- Briones, M.J.I.; McNamara, N.P.; Poskitt, J.; Crow, S.E.; Ostle, N.J. Interactive biotic and abiotic regulators of soil carbon cycling: Evidence from controlled climate experiments on peatland and boreal soils. Glob. Chang. Biol. 2014, 20, 2971–2982. [Google Scholar] [CrossRef] [PubMed]
- Kaisermann, A.; Maron, P.A.; Beaumelle, L.; Lata, J.C. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl. Soil Ecol. 2015, 86, 158–164. [Google Scholar] [CrossRef]
- Classen, A.T.; Sundqvist, M.; Henning, J.A.; Newman, G.S.; Moore, J.A.M.; Cregger, M.; Moorhead, L.C.; Patterson, C.M. ESA Centennial Paper: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 2015, 6, 130. [Google Scholar] [CrossRef]
- Campbell, A.H.; Harder, T.; Nielsen, S.; Kjelleberg, S.; Steinberg, P.D. Climate change and disease: Bleaching of a chemically defended seaweed. Glob. Chang. Biol. 2011, 17, 2958–2970. [Google Scholar] [CrossRef]
- Morriën, E.; Engelkes, T.; van der Putten, W.H. Additive effects of aboveground polyphagous herbivores and soil feedback in native and range-expanding exotic plants. Ecology 2011, 92, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, M.A.; Horton, T.R.; Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 2009, 90, 2352–2359. [Google Scholar] [CrossRef] [PubMed]
- De Bello, F.; Lavorel, S.; Díaz, S.; Harrington, R.; Cornelissen, J.H.C.; Bardgett, R.D.; Berg, M.P.; Cipriotti, P.; Feld, C.K.; Hering, D.; et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 2010, 19, 2873–2893. [Google Scholar] [CrossRef]
- Yang, G.; Yang, X.; Zhang, W.; Wei, Y.; Ge, G.; Lu, W.; Sun, J.; Liu, N.; Kan, H.; Shen, Y.; et al. Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity. OIKOS 2016, 125, 576–585. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; de Bruin, S.; Luckerhoff, L.; van Logtestijn, R.S.P.; Schlaeppi, K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 2016, 10, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Streitwolf-Engel, R.; van der Heijden, M.G.A.; Wiemken, A.; Sanders, I.R. The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 2001, 82, 2846–2859. [Google Scholar] [CrossRef]
- Grimoldi, A.A.; Kavanová, M.; Lattanzi, F.A.; Schnyder, H. Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass. New Phytol. 2005, 168, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Elmore, W.C. Population and Identification of Mycorrhizal Fungi in St. Augustinegrass in Florida and Their Effect on Soilborne Pathogens. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2006. [Google Scholar]
- Olsson, P.A.; Hansson, M.C.; Burleigh, S.H. Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl. Environ. Microbiol. 2006, 72, 4115–4120. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.V.; Hartley, I.P.; Ineson, P.; Fitter, A.H. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob. Chang. Biol. 2008, 14, 1181–1190. [Google Scholar] [CrossRef]
- Pfeffer, A. Sucha 1947 a kurovci na smrku v r. 1949. CsL. Les. 1950, 30, 176–179. (In Czech) [Google Scholar]
- Madziara-Borusiewicz, K.; Strzelecka, H. Conditions of spruce (Picea excelsa) infestations by the engraver beetle (Ips typographus L.) in mountains in Poland. I. Chemical composition of volatile oils from healthy trees and those infested with the honey fungus (Armillaria mellea (Vahl) Quel. J. Appl. Entomol. 1977, 83, 409–415. [Google Scholar]
- James, R.L.; Goheen, D.J. Conifer mortality associated with root disease and insects in Colorado. Plant Dis. 1981, 65, 506–507. [Google Scholar] [CrossRef]
- Capecki, Z. Rejony zdrowotności zachodniej części Karpat. Prace IBL 1994, 781, 61–125. (In Polish) [Google Scholar]
- Christiansen, E.; Husek, K.J. Infestation ability of Ips typographus in Norway spruce, in relation to butt rot, tree vitality and increment. Medd. Nor. Inst. Skogforsk. 1980, 35, 468–482. [Google Scholar]
- Jankovsky, L.; Cudlin, P.; Moravec, I. Root decays as a potential predisposition factor of a bark beetle disaster in the Sumava Mts. J. For. Sci. 2003, 49, 125–132. [Google Scholar]
- Twery, M.J.; Mason, G.N.; Wargo, P.M.; Gottschalk, K.W. Abundance and distribution of rhizomorphs of Armillaria spp. in defoliated mixed oak stands in western Maryland. Can. J. For. Res. 1990, 20, 674–678. [Google Scholar] [CrossRef]
- Okland, B.; Krokene, P.; Lange, H. Science Nordic. The Effect of Climate Change on the Spruce Bark Beetle. Available online: http:www.cicero.uio.no/fulltex/index (accessed on 21 April 2015).
- Seidl, R.; Rammer, W.; Lexer, M.J. Schätzung von Bodenmerkmalen und Modellparametern für die Waldökosystemsimulation auf Basis einer Großrauminventur. Allg. Forst-Jagdztg 2009, 180, 35–44. (In German) [Google Scholar]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jönsson, A.M.; Merganicova, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Lexer, M.J. Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim. Chang. 2011, 106, 225–254. [Google Scholar] [CrossRef]
- Langvall, O. Impact of climate change, seedling type and provenance on the risk of damage to Norway spruce (Picea abies (L.) Karst.) seedling in Sweden due to early summer frosts. Scand. J. For. Res. 2011, 26, 56–63. [Google Scholar] [CrossRef]
- Faccoli, M. Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern. Alps. Environ. Entomol. 2009, 38, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Marini, L.; Ayres, M.P.; Battisti, A.; Faccoli, M. Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Clim. Chang. 2012, 115, 327–341. [Google Scholar] [CrossRef]
- Marini, L.; Liedelow, A.; Jӧnsson, A.M.; Wulff, S.; Schroeder, L.M. Population dynamics of the spruce bark beetle: A long term study. Oikos 2013, 112, 1768–1776. [Google Scholar] [CrossRef]
- Pham, T.; Chen, H.; Yu, J.; Dai, L.; Zhang, R.; Vu, T.Q.T. The Differential Effects of the Blue-Stain Fungus Leptographium qinlingensis on Monoterpenes and Sesquiterpenes in the Stem of Chinese White Pine (Pinus armandi) Saplings. Forests 2014, 5, 2730–2749. [Google Scholar] [CrossRef]
- Schiebe, C.; Hammerbacher, A.; Birgersson, G.; Witzell, J.; Brodelius, P.; Gershenzon, J.; Hansson, B.S.; Krokene, P.; Schyler, F. Inducibility of chemical defences in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 2012, 170, 183–198. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, K.; Żółciak, A.; Damszel, M.; Lech, P.; Sierota, Z. Armillaria Pathogenesis under Climate Changes. Forests 2017, 8, 100. https://doi.org/10.3390/f8040100
Kubiak K, Żółciak A, Damszel M, Lech P, Sierota Z. Armillaria Pathogenesis under Climate Changes. Forests. 2017; 8(4):100. https://doi.org/10.3390/f8040100
Chicago/Turabian StyleKubiak, Katarzyna, Anna Żółciak, Marta Damszel, Paweł Lech, and Zbigniew Sierota. 2017. "Armillaria Pathogenesis under Climate Changes" Forests 8, no. 4: 100. https://doi.org/10.3390/f8040100
APA StyleKubiak, K., Żółciak, A., Damszel, M., Lech, P., & Sierota, Z. (2017). Armillaria Pathogenesis under Climate Changes. Forests, 8(4), 100. https://doi.org/10.3390/f8040100