Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduous Tree Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Experimental Design and Treatments
2.3. Planted Spruce Assessment
2.4. Regenerating Tree Density Assessment
2.5. Soil Sampling and Laboratory Analyses
2.6. Statistical Analyses
3. Results
3.1. Spruce Responses
3.2. Deciduous Tree Responses
3.3. Aggregate Forest Densities
3.4. Soil Responses
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lieffers, V.J.; Armstrong, G.W.; Stadt, K.J.; Marenholtz, E.H. Forest regeneration standards: Are they limiting management options for Alberta’s boreal mixedwoods? For. Chron. 2014, 84, 76–82. [Google Scholar] [CrossRef]
- Peters, V.S.; Macdonald, S.E.; Dale, R.T. Patterns of initial versus delayed regeneration of white spruce in boreal mixedwood succession. Can. J. For. Res. 2006, 36, 1597–1609. [Google Scholar] [CrossRef]
- Purdy, B.G.; Macdonald, S.E.; Dale, M.R.T. The regeneration niche of white spruce following fire in the mixedwood boreal forest. Silva Fenn. 2002, 36, 289–306. [Google Scholar] [CrossRef]
- Zasada, J.C.; Gregory, R.A. Regeneration of White Spruce with Reference to Interior Alaska: A Literature Review; United States Department of Agriculture and Forest Service Research Paper PNW-79; Pacific Northwest Forest and Range Experiment Station, Institute of Northern Forestry, United States Department of Agriculture: Juneau, AK, USA, 1969; p. 37.
- Eis, S. Establishment and early development of white spruce in the interior of British Columbia. For. Chron. 1967, 43, 174–177. [Google Scholar] [CrossRef]
- Gärtner, S.M.; Lieffers, V.J.; Macdonald, S.E. Ecology and management of natural regeneration of white spruce in the boreal forest. Environ. Rev. 2011, 19, 461–478. [Google Scholar] [CrossRef]
- Beach, E.W.; Halpern, C.B. Controls on conifer regeneration in managed riparian forests: Effects of seed source, substrate, and vegetation. Can. J. For. Res. 2001, 31, 471–482. [Google Scholar] [CrossRef]
- Christy, E.J.; Mack, R.N. Variation in demography of juvenile Tsuga heterophyla across the substratum mosaic. J. Ecol. 1984, 72, 75–91. [Google Scholar] [CrossRef]
- Day, R.J. Stand structure, succession and use of southern Alberta’s Rocky Mountain Forest. For. Ecol. 1972, 53, 472–478. [Google Scholar] [CrossRef]
- LaRoi, G.H.; Stringer, M.H.L. Ecological studies in the boreal spruce-fir forests of the North American taiga, II. Analysis of the bryophyte flora. Can. J. Bot. 1976, 54, 619–643. [Google Scholar]
- Abrahamson, I. Picea glauca, White Spruce, 2015. Fire Effects Information System. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available online: http://www.fs.fed.us/database/feis/plants/tree/picgla/all.html (accessed on 2 December 2016).
- Cole, E.; Youngblood, A.; Newton, M. Effects of competing vegetation on juvenile white spruce (Picea glauca (Moench) Voss) growth in Alaska. Ann. For. Sci. 2003, 60, 573–583. [Google Scholar] [CrossRef]
- Frey, B.R.; Lieffers, V.J.; Landhäusser, S.M.; Comeau, P.G.; Greenway, K.J. An analysis of sucker regeneration of trembling aspen. Can. J. For. Res. 2003, 33, 1170–1176. [Google Scholar] [CrossRef]
- Lieffers, V.J.; Macdonald, S.E.; Hogg, E.H. Ecology of and control strategies for Calamagrostis canadensis in boreal forest sites. Can. J. For. Res. 1993, 23, 2070–2077. [Google Scholar] [CrossRef]
- Pitt, D.G.; Comeau, P.G.; Parker, W.C.; MacIsaac, D.; McPherson, S.; Hoepting, M.K.; Stinson, A.; Mihajlovich, M. Early vegetation control for the regeneration of a single-cohort, intimate mixture of white spruce and trembling aspen on upland boreal sites. Can. J. For. Res. 2010, 40, 549–564. [Google Scholar] [CrossRef]
- Grover, G.; Fast, W. Alberta making strides in mixedwood management. For. Chron. 2007, 83, 714–718. [Google Scholar] [CrossRef]
- MacDonald, G.B. The case for boreal mixedwood management: An Ontario perspective. For. Chron. 1995, 71, 725–733. [Google Scholar] [CrossRef]
- Forest Research Advisory Council of Canada. Forest research priorities in Canada, 1993. For. Chron. 1994, 70, 84–87. [Google Scholar]
- Boyle, T.J.B. Biodiversity of Canadian forests: Current status and future challenges. For. Chron. 1992, 68, 444–453. [Google Scholar] [CrossRef]
- Suffling, R.; Lihou, C.; Morand, Y. Control of landscape diversity by catastrophic disturbance: A theory and a case study of fire in a Canadian boreal forest. Environ. Manag. 1988, 12, 73–78. [Google Scholar] [CrossRef]
- United States Department of Agriculture Plant Guide: Quaking Aspen Populus tremuloides Michx. United States Department of Agriculture and Natural Resources Conservation Service. Available online: https://plants.usda.gov/plantguide/pdf/cs_potr5.pdf (accessed on 5 June 2016).
- Howard, J.L. Populus tremuloides, 1996. Fire Effects Information System. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available online: http://www.feis-crs.org/feis/ (accessed on 3 December 2016).
- Frey, B.R.; Lieffers, V.J.; Munson, A.D.; Blenis, P.V. The influence of partial harvesting and forest floor disturbance on nutrient availability and understory vegetation in boreal mixedwoods. Can. J. For. Res. 2003, 33, 1180–1188. [Google Scholar] [CrossRef]
- Cooke, B.J.; Roland, J. Trembling aspen responses to drought and defoliation by forest tent caterpillar and reconstruction of recent outbreaks in Ontario. Can. J. For. Res. 2007, 37, 1586–1598. [Google Scholar] [CrossRef]
- Landhäusser, S.M.; Lieffers, V.J. Growth of Populus tremuloides in association with Calamagrostis canadensis. Can. J. For. Res. 1998, 28, 396–401. [Google Scholar] [CrossRef]
- Uchytil, R.J. Betula papyrifera, 1991. Fire Effects Information System. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available online: http://www.feis-crs.org/feis/ (accessed on 3 December 2016).
- Harris, H.T. Populus balsamifera subsp. balsamifera, 1990. Fire Effects Information System. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available online: http://www.feis-crs.org/feis/ (accessed on 3 December 2016).
- Osko, T.J.; Glasgow, M. Removing the Wellsite Footprint: Recommended Practices for Construction and Reclamation of Wellsites on Upland Forests in Boreal Alberta; Department of Biological Sciences, University of Alberta: Edmonton, AB, Canada, 2010; p. 61. [Google Scholar]
- Brown, R.L.; Naeth, M.A. Woody debris amendment enhances reclamation after oil sands mining in Alberta, Canada. Restor. Ecol. 2014, 22, 40–48. [Google Scholar] [CrossRef]
- Natural Regions Committee. Natural Regions and Subregions of Alberta; Publication Number T/852; Downing, D.J., Pettapiece, W.W., Eds.; Government of Alberta: Edmonton, AB, Canada, 2006; p. 254.
- Maps—The Last Great Intact Forest Landscapes of Canada: Atlas of Alberta: Part 1: 2005 Natural Regions and Subregions of Alberta, 2005. Global Forest Watch Canada. Available online: http://globalforestwatch.ca/publications/20090402A_MapsI (accessed on 15 December 2016).
- Rowe, J.S. Forest Regions of Canada; Publication No. 1300; Fisheries and Environment Canada; Canadian Forest Service: Ottawa, ON, Canada, 1972; p. 172.
- Blake, G.R. Bulk Density. In Methods of Soil Analysis, Part 1; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 374–390. [Google Scholar]
- Laverty, D.H.; Bollo-Kamara, A. Recommended Methods of Soil Analyses for Canadian Prairie Agricultural Soils; Report 300; Alberta Agriculture: Edmonton, AB, Canada, 1988.
- Ashworth, J.; Mrazek, K. Modified Kelowna test for available phosphorus and potassium in soil. Commun. Soil Sci. Plant Anal. 1995, 26, 731–739. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Bartels, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy; Soil Science Society of America: Madison WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Gravimetric method for loss of carbon dioxide. In Methods of Soil Analysis: Part 3 Chemical Methods; Bartels, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy; Soil Science Society of America: Madison, WI, USA, 1996; pp. 455–456. [Google Scholar]
- Miller, J.J.; Curtin, D. Electrical conductivity and soluble ions. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science; CRC Press: Boca Raton, FL, USA, 2008; pp. 161–172. [Google Scholar]
- Kroetsch, D.; Wang, C. Particle size distribution. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science; CRC Press: Boca Raton, FL, USA, 2008; pp. 713–725. [Google Scholar]
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 15 January 2016).
- Frerichs, L.A. Decadal Assessment of Successional Development on Reclaimed Upland Boreal Well Sites. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, January 2017. [Google Scholar]
- Vitousek, P.M.; Gosz, J.R.; Grier, C.C.; Melillo, J.M.; Reiners, W.A.; Todd, R.L. Nitrate losses from disturbed ecosystems. Science 1979, 204, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Melillo, J.M. Nitrate losses from disturbed forests: Patterns and mechanisms. For. Sci. 1979, 15, 605–619. [Google Scholar]
- Gradowski, T.; Sidders, D.; Keddy, T.; Lieffers, V.J.; Landhäusser, S.M. Effects of overstory retention and site preparation on growth of planted white spruce seedlings in deciduous and coniferous dominated boreal plains mixedwoods. For. Ecol. Manag. 2008, 255, 3744–3749. [Google Scholar] [CrossRef]
- Munson, A.D.; Margolis, H.A.; Brand, D.G. Intensive silvicultural treatment: Impacts on soil fertility and planted conifer response. Soil Sci. Soc. Am. J. 1993, 57, 246–255. [Google Scholar] [CrossRef]
- Lupi, C.; Morin, H.; Deslauriers, A.; Rossi, S.; Houle, D. The role of soil nitrogen for the conifers of the boreal forest: A critical review. Int. J. Plant Soil Sci. 2013, 2, 155–189. [Google Scholar] [CrossRef] [PubMed]
- Visser, S.; Fujikawa, J.; Griffiths, C.L.; Parkinson, D. Effect of topsoil storage on microbial activity primary production and decomposition potential. Plant Soil 1984, 82, 41–50. [Google Scholar] [CrossRef]
- Kabzems, R.; Haeussler, S. Soil properties, aspen, and white spruce responses 5 years after organic matter removal and compaction treatments. Can. J. For. Res. 2005, 35, 2045–2055. [Google Scholar] [CrossRef]
- Landhäusser, S.M.; Wachowski, J.; Lieffers, V.J. Transfer of live aspen root fragments, an effective tool for large-scale boreal forest reclamation. Can. J. For. Res. 2015, 45, 1056–1064. [Google Scholar] [CrossRef]
- Peterson, E.B.; Peterson, N.M. Ecology, Management, and Use of Aspen and Balsam Poplar in the Prairie Provinces, Canada; Special Report 1; Forestry Canada, Northwest Region, Northern Forestry Centre: Edmonton, AB, Canada, 1992; p. 252.
- Michaelian, M.; Hogg, E.H.; Hall, R.J.; Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang. Biol. 2011, 17, 2084–2094. [Google Scholar] [CrossRef]
- Hogg, E.H.; Brandt, J.P.; Kochtubajda, B. Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can. J. For. Res. 2002, 32, 823–832. [Google Scholar] [CrossRef]
- Alberta Water Portal. Drought in 21st Century Alberta. Available online: http://albertawater.com/history-of-drought-in-alberta/drought-in-21st-century-alberta (accessed on 5 March 2017).
- Osko, T.J. Personal Observation; Circle T Consulting: Vegreville, AB, Canada, 2004. [Google Scholar]
- Beckingham, J.D. Ecosystem Associations of Northern Alberta; Department of Environmental Protection, Alberta Forest Service: Edmonton, AB, Canada, 1993.
- Vinge, T.; Pyper, M. Managing Woody Materials on Industrial Sites; Alberta School of Forest Science and Management, University of Alberta: Edmonton, AB, Canada, 2012; p. 32. [Google Scholar]
- Landhäusser, S.M.; Lieffers, V.J.; Chow, P. Impact of chipping residues and its leachate on the initiation and growth of aspen root suckers. Can. J. Soil Sci. 2007, 87, 361–367. [Google Scholar] [CrossRef]
- Gold, K.; Hay, F. Identifying Desiccation-Sensitive Seeds; Technical Information Sheet 10; Millennium Seed Bank Partnership; Royal Botanic Gardens: Kew, VIC, Australia, 2014. Available online: http://www.kew.org/sites/default/files/10-Desiccation%20tolerance%20web_0.pdf (accessed on 29 October 2016).
- Qi, M.Q.; Scarratt, J.B. Effect of harvesting method on seed bank dynamics in a boreal mixedwood forest in northwestern Ontario. Can. J. Bot. 1998, 76, 872–883. [Google Scholar] [CrossRef]
Year | Number of Sites | Soil Treatment | Soil Excavation | Soil Storage Method | Woody Material Management | Tree Planting | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
No | Yes | Progressive Pile | Separate Piles | Spread Mulch | Spread Whole Slash | Wind-Rowed Whole Slash | Non-Planted | Planted | |||
2004 | 3 | Low disturbance | √ | n/a | √ * | √ | √ | ||||
2004 | 5 | Low disturbance | √ | n/a | √ | √ | √ | ||||
2005 | 2 | Low disturbance | √ | n/a | √ | √ | √ | √ | |||
2006 | 3 | Low disturbance | √ | n/a | √ | √ | √ | ||||
2004 | 5 | High disturbance | √ | √ | √ | √ | √ | ||||
2005 | 2 | High disturbance | √ | √ | √ | √ | √ | √ | |||
2006 | 1 | High disturbance | √ | √ | √ | √ | √ | √ | |||
2006 | 3 | High disturbance | √ | √ | √ | √ | √ | √ | |||
2006 | 3 | Duff-stripped | √ ** | √ | √ | √ | √ | ||||
2006 | 6 | Root salvage | √ | √ | √ | √ |
DBH Class | DBH (cm) | Height Class | Height (m) |
---|---|---|---|
1 | 0–2 | 1 | 0–0.5 |
3 | 2–4 | 2 | 0.5–1.3 |
5 | 4–6 | 3 | 1.3–3 |
7 | 6–9 | 4 | 3–5 |
9 | 9–12 | 5 | 5+ |
Treatments (n) | Aspen DBH Class | Aspen Height Class | Aspen Density (Trees m−2) | Paper Birch Density (Trees m−2) | Balsam Poplar Density (Trees m−2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
ANOVA p-values | 0.019 | 0.022 | <0.001 | 0.089 | <0.001 | |||||
Clear cuts (4) | 2.1 | A | 3.6 | A | 1.64 | A | 3.19 | A | 0.01 | C |
Low disturbance (10) | 1.5 | AB | 3.1 | AB | 0.86 | B | 0.82 | B | 0.36 | BC |
High disturbance (11) | 1.2 | B | 2.6 | BC | 0.16 | C | 0.86 | AB | 0.71 | B |
Root salvage (6) | 1.3 | B | 2.2 | C | 0.23 | C | 0.29 | B | 2.05 | A |
Duff stripping (3) | 1.0 | B | 2.3 | C | 0.36 | C | 0.08 | B | 0.26 | BC |
SEM | 0.2 | 0.2 | 0.27 | 0.84 | 0.49 |
Treatment Grouping | Mean Comparison | p-Value | |||
---|---|---|---|---|---|
Aspen Height Class | |||||
Within Low Disturbance | |||||
Whole slash (n = 2) | 3.2 (±0.4) | VS. | Mulching (n = 8) | 3.1 (±0.4) | 0.86 |
Shallow mulch (n = 3) | 3.7 (±0.6) | VS. | Deep mulch (n = 3) | 3.0 (±0.6) | 0.34 |
Within High Disturbance | |||||
Separate piles (n = 3) | 2.8 (±0.4) | VS. | Progressive piles (n = 8) | 2.5 (±0.4) | 0.57 |
Spread slash (n = 11) | 2.3 (±0.3) | VS. | Windrowed slash (n = 6) | 1.9 (±0.3) | 0.15 |
Aspen Diameter at Breast Height Class | |||||
Within Low Disturbance | |||||
Whole slash (n = 2) | 1.3 (±0.4) | VS. | Mulching (n = 8) | 1.6 (±0.4) | 0.52 |
Shallow mulch (n = 3) | 3.1 (±1.0) | VS. | Deep mulch (n = 3) | 2.3 (±1.0) | 0.48 |
Within High Disturbance | |||||
Separate piles (n = 3) | 1.2 (±0.2) | VS. | Progressive piles (n = 8) | 1.2 (±0.2) | 0.95 |
Spread slash (n = 11) | 1.3 (±0.2) | VS. | Windrowed slash (n = 6) | 0.8 (±0.2) | 0.024 |
Aspen Density (trees m−2) | |||||
Within Low Disturbance | |||||
Whole slash (n = 2) | 1.16 (±0.34) | VS. | Mulching (n = 8) | 0.79 (±0.34) | 0.31 |
Shallow mulch (n = 3) | 0.85 (±0.11) | VS. | Deep mulch (n = 3) | 0.51 (±0.11) | 0.094 |
Within High Disturbance | |||||
Separate piles (n = 3) | 0.05 (±0.08) | VS. | Progressive piles (n = 8) | 0.21 (±0.08) | 0.083 |
Spread slash (n = 11) | 0.15 (±0.10) | VS. | Windrowed slash (n = 6) | 0.20 (±0.10) | 0.57 |
SEP: Spread slash (n = 3) | 0.02 (±0.03) | VS. | Windrowed slash (n = 3) | 0.08 (±0.03) | 0.005 |
PROG: Spread slash (n = 8) | 0.20 (±0.21) | VS. | Windrowed slash (n = 3) | 0.33 (±0.21) | 0.81 |
Paper Birch (trees m−2) | |||||
Within Low Disturbance | |||||
Whole slash (n = 2) | 1.57 (±0.87) | VS. | Mulching (n = 8) | 0.63 (±0.87) | 0.31 |
Shallow mulch (n = 3) | 1.58 (±0.42) | VS. | Deep mulch (n = 3) | 1.01 (±0.42) | 0.25 |
Within High Disturbance | |||||
Separate piles (n = 3) | 0.05 (±0.60) | VS. | Progressive piles (n = 8) | 1.17 (±0.60) | 0.03 |
Spread slash (n = 11) | 0.83 (±0.08) | VS. | Windrowed slash (n = 6) | 0.46 (±0.08) | 0.085 |
Balsam Poplar (trees m−2) | |||||
Within Low Disturbance | |||||
Whole slash (n = 2) | 0.15 (±0.43) | VS. | Mulching (n = 8) | 0.41 (±0.43) | 0.48 |
Shallow mulch (n = 3) | 0.01 (±0.13) | VS. | Deep mulch (n = 3) | 0.29 (±0.13) | 0.096 |
Within High Disturbance | |||||
Separate piles (n = 3) | 0.99 (±0.61) | VS. | Progressive piles (n = 8) | 0.60 (±0.61) | 0.20 |
Spread slash (n = 11) | 0.72 (±0.44) | VS. | Windrowed slash (n = 6) | 1.10 (±0.44) | 0.67 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frerichs, L.A.; Bork, E.W.; Osko, T.J.; Naeth, M.A. Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduous Tree Regeneration. Forests 2017, 8, 201. https://doi.org/10.3390/f8060201
Frerichs LA, Bork EW, Osko TJ, Naeth MA. Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduous Tree Regeneration. Forests. 2017; 8(6):201. https://doi.org/10.3390/f8060201
Chicago/Turabian StyleFrerichs, Laurie A., Edward W. Bork, Terrance J. Osko, and M. Anne Naeth. 2017. "Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduous Tree Regeneration" Forests 8, no. 6: 201. https://doi.org/10.3390/f8060201
APA StyleFrerichs, L. A., Bork, E. W., Osko, T. J., & Naeth, M. A. (2017). Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduous Tree Regeneration. Forests, 8(6), 201. https://doi.org/10.3390/f8060201