Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change
Abstract
:1. Introduction
2. What Is a Hybrid Zone?
3. Models of Hybrid Zone Maintenance
4. Dynamics of Hybrid Zones
5. Major Barriers to Hybridization
6. Facilitating Breeding Programs
7. Hybrid Zone Impacts on Ecological Communities
8. Predicting Adaptation to Changing Climates
9. Genetic Conservation and Hybridization
10. Conclusions
Author Contributions
Conflicts of Interest
References
- Gross, B.L.; Rieseberg, L.H. The ecological genetics of homoploid hybrid speciation. J. Hered. 2005, 96, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J. Hybrid speciation. Nature 2007, 446, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Soltis, P.S.; Soltis, D.E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 2009, 60, 561–588. [Google Scholar] [CrossRef] [PubMed]
- Yakimowski, S.B.; Rieseberg, L.H. The role of homploid hybridization in evolution: A century of studies synthesizing genetics and ecology. Am. J. Bot. 2014, 101, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.C.; Stebbins, G.L. Hybridization as an evolutionary stimulus. Evolution 1954, 8, 378–388. [Google Scholar] [CrossRef]
- Rius, M.; Darling, J.A. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol. Evol. 2014, 29, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Hamilton, J.A. Interspecies hybridization in the conservation toolbox: Response to Kovach et al. (2016). Conserv. Biol. 2016, 30, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.J.; Barton, N.H.; Good, J.M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 2016, 25, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 187–214. [Google Scholar] [CrossRef]
- Aitken, S.; Bemmels, J.B. Time to get moving: Assisted gene flow in forest trees. Evol. Appl. 2015, 9, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; De la Torre, A.; Aitken, S. Fine-scale environmental variation contributes to introgression in a three-species spruce hybrid complex. Tree Genet. Genomes 2015, 11, 817. [Google Scholar] [CrossRef]
- Franks, S.J.; Weber, J.J.; Aitken, S.N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 2013, 7, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Sgro, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Ronce, O.; Robledo-Arnuncio, J.J.; Guillaume, F.; Bohrer, G.; Nathan, R.; Bridle, J.R.; Gomulkiewicz, R.; Klein, E.R.; Ritland, K.; et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 2012, 15, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.; Aitken, S.; Alia, R.; González-Martínez, S.C.; Hanninen, H.; Kremer, A.; Lefevre, F.; Lenormand, T.; Yeaman, S.; Whetton, R.; et al. Potential for evolutionary responses to climate change—Evidence from tree populations. Glob. Chang. Biol. 2013, 19, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Sork, V.L.; Aitken, S.; Dyer, R.; Eckert, A.J.; Legendre, P.; Neale, D. Putting the landscape into the genomics of forest trees: Approaches for understanding local adaptation and population responses to a changing climate. Tree Genet. Genomes 2013, 9, 901–911. [Google Scholar] [CrossRef]
- McKown, A.D.; Klapste, J.; Guy, R.D.; Geraldes, A.; Porth, I.; Hannemann, J.; Friedmann, M.; Muchero, W.; Tuskan, G.; Ehlting, J.; et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of populus trichocarpa. New Phytol. 2014, 203, 535–553. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, S.C.; Ersoz, E.; Brown, G.R.; Wheeler, N.C.; Neale, D. DNA sequence variation and selection of tag single-nucleotie polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 2006, 172, 1915–1926. [Google Scholar] [CrossRef] [PubMed]
- Eckert, A.J.; Bower, A.D.; Wegrzyn, J.L.; Pande, B.; Jermstad, K.D.; Krutovsky, K.V.; St. Clair, J.B.; Neale, D.B. Association genetics of coastal douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 2009, 182, 1289–1302. [Google Scholar] [PubMed]
- Eckert, A.J.; Wegrzyn, J.L.; Pande, B.; Jermstad, K.D.; Lee, J.M.; Liechty, J.D.; Tearse, B.R.; Krutovsky, K.V.; Neale, D.B. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal douglas fir (Pseudotsuga menziesii var. Menziesii). Genetics 2009, 183, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Eckert, A.J.; Jeerwaarden, J.; Wegrzyn, J.L.; Nelson, C.D.; Ross-Ibarra, J.; González-Martínez, S.C.; Neale, D. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 2010, 185, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.G. Hybrid zones: Windows on evolutionary process. Oxf. Surv. Evol. Biol. 1990, 7, 69–128. [Google Scholar]
- Arnold, M.L. Natural Hybridization and Evolution; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Abbott, R.J.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.E.; Bierne, N.; Boughman, J.W.; Brelsford, A.; Buerkle, C.; Buggs, R.J.A.; et al. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, L.H.; Wendel, J.F. Introgression and its consequences in plants. In Hybrid Zones and the Evolutionary Process; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Hewitt, G.M. Hybrid zones—Natural laboratories for evolutionary studies. Trends Ecol. Evol. 1988, 3, 158–167. [Google Scholar] [CrossRef]
- Stebbins, G.L. The role of hybridization in evolution. Proc. Am. Philos. Soc. 1959, 103, 231–251. [Google Scholar]
- Wheeler, N.C.; Guries, R.P. A quantitative measure of introgression between lodgepole and jack pines. Can. J. Bot. 1987, 65, 1876–1885. [Google Scholar] [CrossRef]
- Rweyongeza, D.M.; Dhir, N.K.; Barnhardt, L.K.; Hansen, C.; Yang, R.-C. Population differentiation of the lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana) complex in alberta: Growth, survival, and responses to climate. Can. J. Bot. 2007, 85, 545–556. [Google Scholar] [CrossRef]
- Rieseberg, L.H.; Archer, M.A.; Wayne, R.K. Transgressive segregation, adaptation and speciation. Heredity 1999, 83, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, L.H.; Ellstrand, N.C. What can molecular and morphological markers tell us about plant hybridization. Crit. Rev. Plant Sci. 1993, 12, 213–241. [Google Scholar] [CrossRef]
- Rieseberg, L. The role of hybridization in evolution: Old wine in new skins. Am. J. Bot. 1995, 82, 944–953. [Google Scholar] [CrossRef]
- Welch, M.E.; Rieseberg, L.H. Habitat divergence between a homploid hybrid sunflower species, Helianthus paradoxus and its progenitors. Am. J. Bot. 2002, 89, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; Miller, J.M. Adaptive introgression as a resource for management and genetic conservation under climate change. Conserv. Biol. 2016, 30, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, L.H.; Widmer, A.; Arntz, A.M.; Burke, B. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Carney, S.E.; Wolfe, D.E.; Rieseberg, L.H. Hybridisation and Forest Conservation; CSIRO Publishing Group: Melbourne, Australia, 2000. [Google Scholar]
- Barton, N.H.; Hewitt, G.M. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 1985, 16, 113–148. [Google Scholar] [CrossRef]
- Barton, N.H. The role of hybridization in evolution. Mol. Ecol. 2001, 10, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.S. An evaluation of narrow hybrid zones in vertebrates. Q. Rev. Biol. 1977, 52, 263–277. [Google Scholar] [CrossRef]
- Miglia, K.J.; McArthur, E.D.; Moore, W.S.; Wang, H.; Graham, J.H.; Freeman, D.C. Nine-year reciprocal transplant experiment in the gardens of the basin and mountain big sagebrush (Artemisia tridentata: Asteraceae) hybrid zone of salt creek canyon: The importance of multiple-year tracking of fitness. Biol. J. Linn. Soc. 2005, 86, 213–225. [Google Scholar] [CrossRef]
- Harrison, R.G.; Rand, D.M. Mosaic hybrid zones and the nature of species boundaries. In Speciation and Its Consequences; Otte, D., Endler, J.A., Eds.; Sinauer: Sunderland, MA, USA, 1989; pp. 111–133. [Google Scholar]
- Rand, D.M.; Harrison, R. Ecological genetics of a mosaic hybrid zone: Mitochondrial, nuclear, and reproductive differentiation of crickets by soil type. Evolution 1989, 43, 432–449. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Feng, J.; Dong, M.; Wu, G.; Mao, K.; Liu, J. Genetic origin and composition of a natural hybrid poplar populus x jrtyschensis from two distantly related species. BMC Plant Biol. 2016, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Griffin, A.R.; Burgess, I.P.; Wolf, L. Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’herit.—A review. Aust. J. Bot. 1988, 36, 41–66. [Google Scholar] [CrossRef]
- McGowen, M.H.; Vaillancourt, R.E.; Pilbeam, D.J.; Potts, B.M. Sources of variation in self-incompatibility in the Australian forest tree, Eucalyptus globulus. Ann. Bot. 2010, 105, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Driebe, E.M.; Whitham, T.G. Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 2000, 123, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Field, D.L.; Ayre, D.J.; Whelan, R.J.; Young, A.G. Relative frequency of sympatric species influences rates of interspecific hybridization, seed production and seedling performance in the uncommon Eucalyptus aggregata. J. Ecol. 2008, 96, 1198–1210. [Google Scholar] [CrossRef]
- Lexer, C.; Fay, M.F.; Joseph, J.A.; Nica, M.S.; Heinze, B. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): The role of ecology and life history in gene introgression. Mol. Ecol. 2005, 14, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Karrenberg, S.; Edwards, P.J.; Kollmann, J. The life history of Salicaceae living in the active zone of floodplains. Freshw. Biol. 2002, 47, 733–748. [Google Scholar] [CrossRef]
- Lindtke, D.; Gompert, Z.; Lexer, C.; Buerkle, C.A. Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Mol. Ecol. 2014, 23, 4316–4330. [Google Scholar] [CrossRef] [PubMed]
- Christe, C.; Stolting, K.; Bresadola, L.; Fussi, B.; Heinze, B.; Wegmann, D.; Lexer, C. Selection against recombinant hybrids maintains reproductive isolation in hybridizing populus species despite F1 fertility and recurrent gene flow. Mol. Ecol. 2016, 25, 2482–2498. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.J.; Brennan, A.C. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos. Trans. R. Soc. B 2014, 369, 20130346. [Google Scholar] [CrossRef] [PubMed]
- Schueler, S.; Falk, W.; Koskela, J.; Lefevre, F.; Bozzano, M.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D. Vulernability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Chang. Biol. 2014, 20, 1498–1511. [Google Scholar] [CrossRef] [PubMed]
- Ortego, J.; Gugger, P.F.; Riordan, E.C.; Sork, V.L. Influence of climatic niche suitability and geographical overlap on hybridization patterns among Southern Californian oaks. J. Biogeogr. 2014, 41, 1895–1908. [Google Scholar] [CrossRef]
- Buggs, R.J.A. Empirical study of hybrid zone movement. Heredity 2007, 99, 301–312. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, A.R.; Roberts, D.R.; Aitken, S. Genome-wide admixture and ecological niche modeling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Mol. Ecol. 2014, 23, 2046–2059. [Google Scholar] [CrossRef] [PubMed]
- Lepais, O.; Petit, R.J.; Guichoux, E.; Lavabre, J.E.; Alberto, F.; Kremer, A.; Gerber, S. Species relative abundance and direction of introgression in oaks. Mol. Ecol. 2009, 18, 2228–2242. [Google Scholar] [CrossRef] [PubMed]
- Potts, B.M.; Reid, J.B. Hybridization as a dispersal mechanism. Evolution 1998, 42, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Bodenes, C.; Ducousso, A.; Rousset, G.; Kremer, A. Hybridization as a mechanism of invasion in oaks. New Phytol. 2003, 161, 151–164. [Google Scholar] [CrossRef]
- Klein, E.K.; Lagache-Navarro, L.; Petit, R.J. Demographic and spatial determinants of hybridization rate. J. Ecol. 2017, 105, 29–38. [Google Scholar] [CrossRef]
- De Lafontaine, G.; Prunier, J.; Gerardi, S.; Bousquet, J. Tracking the progression of speciation: Variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana x P. rubens). Mol. Ecol. 2015, 24, 5229–5247. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; Aitken, S.N. Genetic and morphological structure of a spruce hybrid (Picea sitchensis × P. glauca) zone along a climatic gradient. Am. J. Bot. 2013, 100, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Critchfield, W.B. Crossability and relationships of the closed-cone pines. Silvae Genetica 1966, 16, 89–97. [Google Scholar]
- Dodd, R.S.; Afzal-Rafii, Z. Selection and dispersal in a multispecies oak hybrid zone. Evolution 2004, 58, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.D.; Long, S.M.; Sniezko, R.A. Sexual reproduction and crossing barriers in white pines: The case between Pinus lambertiana (Sugar pine) and P. monticola (western white pine). Tree Genet. Genomes 2005, 1, 143–150. [Google Scholar] [CrossRef]
- Buerkle, C.A. Ecological context shapes hybridization dynamics. Mol. Ecol. 2009, 18, 2077–2079. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.V.; Willis, J.H.; Clark, J.S. Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am. J. Bot. 2012, 99, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; Lexer, C.; Aitken, S.N. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Mol. Ecol. 2013, 22, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, L.H.; Blackman, B.K. Speciation genes in plants. Ann. Bot. 2010, 106, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Baack, E.; Melo, M.; Rieseberg, L.H.; Ortiz-Barrientos, D. The origins of reproductive isolation in plants. New Phytol. 2015, 207, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Clausen, J.; Heisey, W.M. Experimental Studies on the Nature of Species. IV; Carnegie Institution of Washington: Washington, DC, USA, 1958. [Google Scholar]
- Lowry, D.B.; Rockwood, R.C.; Willis, J.H. Ecological reproductive isolation of coast and inland races of mimulus guttatus. Evolution 2008, 62, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.M.; Streisfeld, M.A. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 2015, 69, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; de Beurs, K.; Wynne, R.H. Phenological response of an Arizona dryland forest to short-term climatic extremes. Remote Sens. 2015, 7, 10832–10855. [Google Scholar] [CrossRef]
- Moyle, L.C.; Levine, M.; Stanton, M.L.; Wright, J.W. Hybrid sterility over tens of meters between ecotypes adapted to serpentine and non-serpentine soils. Evol. Biol. 2012, 39, 207–218. [Google Scholar] [CrossRef]
- Schluter, D.; Conte, G.L. Genetics and ecological speciation. Proc. Natl. Acad. Sci. USA 2009, 106, 9955–9962. [Google Scholar] [CrossRef] [PubMed]
- Prunier, J.; Verta, J.; MacKay, J. Conifer genomics and adaptation: At the crossroads of genetic diversity and genome function. New Phytol. 2015, 209, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Stolting, K.; Paris, M.; Meier, C.; Heinze, B.; Castiglione, S.; Bartha, D.; Lexer, C. Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree. New Phytol. 2015, 207, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, G.; Bousquet, J. Asymmetry matters: A genomic assessment of directional biases in gene flow between hybridizing spruces. Ecol. Evol. 2017, 7, 3883–3893. [Google Scholar] [CrossRef] [PubMed]
- Currat, M.; Ruedi, M.; Petit, R.J.; Excoffier, L. The hidden side of invasions: Massive introgression by local genes. Evolution 2008, 62, 1908–1920. [Google Scholar] [CrossRef] [PubMed]
- Nosil, P.; Schluter, D. The genes underlying the process of speciation. Trends Ecol. Evol. 2011, 26, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Tuskan, G.; DiFazio, S.P.; Teichmann, T. Poplar genomics is getting popular: The impact of the poplar genome project on tree research. Plant Biol. 2004, 6, 2–4. [Google Scholar] [PubMed]
- Woodhams, M.; Steane, D.A.; Jones, R.C.; Nicolle, D.; Moulton, V.; Holland, B. Novel distances for Dollo data. Syst. Biol. 2013, 62, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Grattapaglia, D.; Vaillancourt, R.E.; Shepherd, M.; Thumma, B.R.; Foley, W.; Kulheim, C.; Potts, B.; Myburg, A.A. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genomes 2012, 8, 463–508. [Google Scholar] [CrossRef]
- Larcombe, M.J.; Holland, B.; Steane, D.A.; Jones, R.C.; Nicolle, D.; Vaillancourt, R.E.; Potts, B.M. Patterns of reproductive isolation in Eucalyptus—A phylogenetic perspective. Mol. Biol. Evol. 2015, 32, 1833–1846. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.J.; Freeman, J.S.; Myburg, A.A.; Potts, B.M.; Vaillancourt, R.E. Genomic patterns of species diversity and divergence in Eucalyptus. New Phytol. 2015, 206, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Daubenmire, R. Some geographic variations in Picea sitchensis and their ecologic interpretation. Can. J. Bot. 1968, 46, 787–798. [Google Scholar] [CrossRef]
- Roche, L. A genecological study of the genus picea in british columbia. New Phytol. 1969, 68, 505–554. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Ecophysiology of Northern Spruce Species: The Performance of Planted Seedlings; NRC Research Press: Ottawa, ON, Canada, 2000. [Google Scholar]
- Fan, S.; Grossnickle, S.C.; Sutton, B.C.S. Relationships between gas exchange adaptation of Sitka x Interior spruce genotypes and ribosomal DNA markers. Tree Physiol. 1997, 17, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Silim, S.N.; Guy, R.D.; Patterson, T.B.; Livingston, N.J. Plasticity in water-use efficiency of Picea sitchensis, P. glauca and their natural hybrids. Oecologia 2001, 128, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.C.; Arnott, J.T. Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Can. J. For. Res. 1986, 16, 791–798. [Google Scholar] [CrossRef]
- Bennuah, S.Y.; Wang, T.; Aitken, S.N. Genetic analysis of the Picea sitchensis x glauca introgression zone in british columbia. For. Ecol. Manag. 2004, 197, 65–77. [Google Scholar] [CrossRef]
- Hamilton, J.A.; Lexer, C.; Aitken, S.N. Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis x P. glauca) hybrid zone. New Phytol. 2013, 197, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Fournier-Level, A.; Korte, A.; Cooper, M.D.; Nordborg, M.; Schmitt, J.; Wilczek, A.M. A map of local adaptation in Arabidopsis thaliana. Science 2011, 334, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Hancock, A.M.; Brachi, B.; Faure, N.; Horton, M.W.; Jarymowycz, L.B.; Sperone, F.G.; Toomajian, C.; Roux, F.; Bergelson, J. Adaptation to climate across the Arabidopsis thaliana genome. Science 2011, 334, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Stanton, B.J.; Neale, D.; Li, S. Populus breeding: From the classical to the genomic approach. In Genetics and Genomics of Populus; York, S.N., Ed.; Springer: Berlin, Germany, 2010; pp. 309–348. [Google Scholar]
- Porth, I.; El Kassaby, Y. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol. J. 2015, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, R.; Deraedt, W. Production physiology and growth potential of poplars under short-rotation forestry culture. For. Ecol. Manag. 1999, 121, 9–23. [Google Scholar] [CrossRef]
- Tullus, A.; Rytter, L.; Tullus, T.; Weih, M.; Tullus, H. Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in northern europe. Scand. J. For. Res. 2011, 27, 10–29. [Google Scholar] [CrossRef]
- Vallee, G. Liste des Clones Recommandés Selon les Régions Écologiques Forestières du Québec et Exemples de Productions Ligneuses Obtenues Avec ces Clones; Ministère des Ressources Naturelles du Québec, Direction de la Recherche Forestière: Sainte-Foy, QC, Canada, 1995. [Google Scholar]
- Zhang, S.Y.; Yu, Q.; Chauret, G.; Koubaa, A. Selection for both growth and wood properties in hybrid poplar clones. For. Sci. 2003, 49, 1–6. [Google Scholar]
- Howe, G.T.; Saruul, P.; Davis, J.I.; Chen, T.H.H. Quantitative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theor. Appl. Genet. 2000, 101, 632–642. [Google Scholar] [CrossRef]
- Brandao, L.G.; Campinhos, E.; Ikemori, Y.K. Brazil’s new forest soars to success. Pulp Paper Int. 1984, 26, 38–40. [Google Scholar]
- Chaperon, H. Influence of propagation by cuttings on the breeding strategy of forest trees. In Provenance and Genetic Improvement Strategies in Tropical Forest Trees; Barnes, R.D., Gibson, G.L., Eds.; Deptartment of Forestry, University of Oxford and Zimbabwe Forestry Commission: Harare, Zimbabwe, 1984; pp. 135–148. [Google Scholar]
- Roe, A.D.; MacQuarrie, C.J.K.; Gros-Louis, M.-C.; Simpson, J.D.; Lamarche, J.; Beardmore, T.; Thompson, S.L.; Tanguay, P.; Isabel, N. Fitness dynamics within a poplar hybrid zone: I. Prezygotic and postzygotic barriers impacting a native poplar hybrid stand. Ecol. Evol. 2014, 4, 1629–1647. [Google Scholar] [CrossRef] [PubMed]
- Whitham, T.G.; Bailey, J.K.; Schweitzer, J.A.; Shuster, S.M.; Bangert, R.K.; LeRoy, C.J.; Lonsdorf, E.V.; Allan, G.J.; DiFazio, S.P.; Potts, B.; et al. A framework for community and ecosystem genetics: From genes to ecosystems. Nat. Rev. Genet. 2006, 7, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Whitham, T.G.; Young, W.P.; Martinsen, G.D.; Gehring, C.A.; Schweitzer, J.A.; Shuster, S.M.; Wimp, G.M.; Fischer, D.G.; Bailey, J.K.; Lindroth, R.L.; et al. Community and ecosystem genetics: A consequence of the extended phenotype. Ecology 2003, 84, 559–573. [Google Scholar] [CrossRef]
- Tuskan, G.A.; DiFazio, S.P.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar] [PubMed]
- Moore, A.J.; Brodie, E.D.; Wolf, J.B. Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions. Evolution 1997, 51, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.K.; Deckert, R.; Schweitzer, J.A.; Rehill, B.J.; Lindroth, R.L.; Gehring, C.A.; Whitham, T.G. Host plant genetics affect hidden ecological players: Links among populus, condensed tannins, and fungal endophyte infection. Can. J. Bot. 2005, 83, 356–361. [Google Scholar] [CrossRef]
- LeRoy, C.J.; Whitham, T.G.; Keim, P.; Marks, J.C. Plant genes link forests and streams. Ecology 2006, 87, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.K.; Schweitzer, J.A.; Rehill, B.J.; Lindroth, R.L.; Martinsen, G.D.; Whitham, T.G. Beavers as molecular geneticists: A genetic basis to the foraging of an ecosystem engineer. Ecology 2004, 85, 603–608. [Google Scholar] [CrossRef]
- Whitham, T.G. Plant hybrid zones as sinks for pests. Science 1989, 224, 1490–1493. [Google Scholar] [CrossRef]
- Whitham, T.G.; Morrow, P.A.; Potts, B.M. Plant hybrid zones as centres of biodiversity: The herbivore community of two endemic tasmanian eucalypts. Oecologia 1994, 97, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Dungey, H.S. Pine hybrids—A review of their use performance and genetics. For. Ecol. Manag. 2001, 148, 243–258. [Google Scholar] [CrossRef]
- Dungey, H.S.; Potts, B.M.; Whitham, T.G.; Li, H.F. Plant genetics affects arthropod community richness and composition: Evidence from a synthetic eucalypt hybrid population. Evolution 2000, 54, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Fritz, R.S.; Nichols-Orians, C.M.; Brunsfeld, S.J. Interspecific hybridization of plants and resistance to herbivores: Hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 1994, 97, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Sanchez, E.; Oyama, K. Effect of hybridization of the Quercus crassifolia × Quercus crassipes complex on the community structure of endophagous insects. Oecologia 2006, 147, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Williams, A.L.; Wills, K.E.; Janes, J.K.; Vander Schoor, J.K.; Newton, P.C.D.; Hovenden, M.J. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytol. 2007, 176, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Osanai, Y.; Janes, J.K.; Newton, P.C.D.; Hovenden, M.J. Warming and elevated CO2 combine to increase microbial mineralisation of soil organic matter. Soil Biol. Biochem. 2015, 85, 110–118. [Google Scholar] [CrossRef]
- Hamann, A.; Wang, T. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 2006, 87, 2773–2786. [Google Scholar] [CrossRef]
- Jump, A.S.; Penuelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Lewontin, R.C.; Birch, L.C. Hybridization as a source of variation for adaptation to new environments. Evolution 1966, 20, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Allendorf, F.W.; Leary, R.F.; Spruell, P.; Wenburg, J.K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 2001, 16, 613–622. [Google Scholar] [CrossRef]
- Holliday, J.A.; Suren, H.; Aitken, S.N. Divergent selection and heterogeneous migration rates across the range of sitka spruce (Picea sitchensis). Proc.R. Soc. B Biol. Sci. 2011, 279, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.N.; Whitlock, M.C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 367–388. [Google Scholar] [CrossRef]
- Suarez-Gonzalez, A.; Hefer, C.A.; Christe, C.; Corea, O.; Lexer, C.; Cronk, Q.; Douglas, C.J. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Mol. Ecol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Way, D.A. Tree phenology responses to warming: Spring forward, fall back? Tree Physiol. 2011, 31, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; El Kayal, W.; Hart, A.T.; Runcie, D.E.; Arango-Velez, A.; Cooke, J.E.K. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiol. 2016, 36, 1432–1448. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.T.; Aitken, S.N.; Neale, D.B.; Jermstad, K.D.; Wheeler, N.C.; Chen, T.H.H. From genotype to phenotype: Unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 2003, 81, 1247–1266. [Google Scholar] [CrossRef]
- Yeaman, S.; Hodgins, K.A.; Lotterhos, K.; Suren, H.; Nadeau, S.; Degner, J.C.; Nurkowski, K.A.; Smets, P.; Wang, T.; Gray, L.K.; et al. Convergent local adaptation to climate in distantly related conifers. Science 2016, 353, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, E.K. Geographic Variation in Forest Trees; UBC Press: Vancouver, BC, Canada, 1996. [Google Scholar]
- Carlson, S.M.; Cunningham, C.J.; Westley, P. Evolutionary rescue in a changing world. Trends Ecol. Evol. 2014, 29, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; Royauté, R.; Wright, J.W.; Hodgskiss, P.D.; Ledig, F.T. Genetic conservation and management of the california endemic, torrey pine (Pinus torreyana Parry): Implications of genetic rescue in a genetically depauperate species. Ecol. Evol. 2017, in press. [Google Scholar]
- Milne, R.I.; Abbott, R.J. Reproductive isolation among two interfertile Rhododendron species: Low frequency of post-F1 hybrid genotypes in alpine hybrid zones. Mol. Ecol. 2008, 17, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- Rajora, O.P.; Rahman, M.H. Microsatellite DNA and rapd fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor. Appl. Genet. 2003, 106, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Barbour, R.C.; Wise, S.L.; McKinnon, G.E.; Vaillancourt, R.E.; Williamson, G.J.; Potts, B.M. The potential for gene flow from exotic eucalypt plantations into Australia’s rare native eucalypts. For. Ecol. Manag. 2010, 260, 2079–2087. [Google Scholar] [CrossRef]
- Burgess, K.S.; Husband, B.C. Habitat differentiation and the ecological costs of hybridization: The effects of introduced mulberry (Morus alba) on a native congener (M. rubra). J. Ecol. 2006, 94, 1061–1069. [Google Scholar] [CrossRef]
- Lefèvre, F. Human impacts on forest genetic resources in the temperate zone: An updated review. For. Ecol. Manag. 2004, 197, 257–271. [Google Scholar] [CrossRef]
- Whitely, A.R.; Fitzpatrick, S.W.; Funk, W.C.; Tallmon, D.A. Genetic rescue to the rescue. Trends Ecol. Evol. 2015, 30, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Hwang, A.S.; Northrup, S.L.; Alexander, J.K.; Vo, K.T.; Edmands, S. Long-term experimental hybrid swarms between moderately incompatible Tigriopus californicus populations: Hybrid inferiority in early generations yields to hybrid superiority in later generations. Conserv. Genet. 2011, 12, 895–909. [Google Scholar] [CrossRef]
- Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 2002, 17, 183–189. [Google Scholar] [CrossRef]
- Neuhauser, C.; Andow, D.A.; Heimpel, G.E.; May, G.; Shaw, R.G.; Wagenius, S. Community genetics: Expanding the synthesis of ecology and genetics. Ecology 2003, 84, 545–558. [Google Scholar] [CrossRef]
- Hand, B.K.; Lowe, W.H.; Kovach, R.P.; Muhlfeld, C.C.; Liukart, G. Landscape community genomics: Understanding eco-evolutionary processes in complex environments. Trends Ecol. Evol. 2015, 30, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Crutsinger, G.M. A community genetics perspective: Opportunities for the coming decade. New Phytol. 2015, 210, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Eid, J.; Fehr, A.; Gray, J.E.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.-B.; Schneeberger, K. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 2017, 36, 64–70. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janes, J.K.; Hamilton, J.A. Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. Forests 2017, 8, 237. https://doi.org/10.3390/f8070237
Janes JK, Hamilton JA. Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. Forests. 2017; 8(7):237. https://doi.org/10.3390/f8070237
Chicago/Turabian StyleJanes, Jasmine K., and Jill A. Hamilton. 2017. "Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change" Forests 8, no. 7: 237. https://doi.org/10.3390/f8070237
APA StyleJanes, J. K., & Hamilton, J. A. (2017). Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. Forests, 8(7), 237. https://doi.org/10.3390/f8070237