Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok
Abstract
:1. Introduction
2. Materials and Methods
- Stem density (SD): the number of trees (N) per unit area (N/ha) was counted;
- Basal area (BA): (m2/ha), defined as the ratio of the cross-section area of all trees in the sampling plot to the plot ground area;
- Canopy density (CD): the proportion of an area in the plot covered by the crown of trees and expressed as a percentage of the total area. This research calculated CD from a profile diagram of each 50 × 50 m plot using the QGIS software to reference the canopy based on its Cartesian coordinates;
- Importance value index (IVI): for each plant species in the plot, IVI was calculated by summing the relative percentages of basal area, density and frequency [17];
- Shannon-Wiener index (H’) or Shannon entropy: calculated as a measure of tree species diversity, accounting for both abundance and evenness of the species present in each forest community [18]. It is defined by Equation (2):
- Exponential Shannon entropy (1D): described as true diversity by [20] as a means of clarification and calculated using Equation (3) for better comparison reasons. According to [20], a comparable description of non-spatial diversity can be based on the number equivalents, also denoted as “true diversity indices”. The numbers equivalents, also denoted as “true diversity or 1D” of order q = 1, can be derived by calculating the exponential of the Shannon entropy.
- Shannon’s equitability (EH): calculated by dividing H’ by Hmax (here Hmax = lnS) as shown in Equation (4). Equitability assumes a value between 0 and 1, with 1 being complete evenness.
3. Results
3.1. Urban Forest Structure and Biodiversity in the Bang Kachao Peninsula
3.2. NDVI and Urban Forest Structure
3.3. Relationship between NDVI and Stand Structure
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, K.K.; Gagné, S.A.; Meentemeyer, R.K. Urban Forests and Human Well-Being; Elsevier: Amsterdam, The Netherlands, 2018; pp. 287–305. [Google Scholar]
- Assessment, M.E. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Sukhdev, P.; Wittmer, H.; Schröter-Schlaack, C.; Nesshöver, C.; Bishop, J.; ten Brink, P.; Gundimeda, H.; Kumar, P.; Simmons, B. Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; Progress Press: B’Kara, Malta, 2010. [Google Scholar]
- Richards, D.R.; Passy, P.; Oh, R.R.Y. Impacts of population density and wealth on the quantity and structure of urban green space in tropical Southeast Asia. Landsc. Urban Plan. 2017, 157, 553–560. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Thaiutsa, B.; Puangchit, L.; Kjelgren, R.; Arunpraparut, W. Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For. Urban Green. 2008, 7, 219–229. [Google Scholar] [CrossRef]
- Dobbs, C.; Nitschke, C.R.; Kendal, D. Global drivers and tradeoffs of three urban vegetation ecosystem services. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Yu, X.; Shen, G. Spatial estimation of urban forest structures with Landsat TM data and field measurements. Urban For. Urban Green. 2015, 14, 336–344. [Google Scholar] [CrossRef]
- de Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Sommeechai, M. Effects of Stand Structural Characteristics on the Microclimate of Bang Kachao Green Space in Phra Pradaeng District, Samut Prakan Province, Thailand; Kasetsart University: Bangkok, Thailand, 2017. [Google Scholar]
- Sommeechai, M.; Duangklad, W.; Pornnara, N. The Master Plan of Bang Kachao Green Space to Sustainable Conservation and Development; Kasetsart University: Bangkok, Thailand, 2017. [Google Scholar]
- Fredrickson, T. “Bioblitz” to Save Bang Kachao; Bangkokpost: Bangkok, Thailand, 2014; Available online: https://www.bangkokpost.com/learning/learning-news/441114/bioblitz-to-save-bang-kachao.
- United States Geological Survey Government Agency (USGS). EarthExplorer. Available online: https://www.usgs.gov/ (accessed on 25 April 2012).
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with erts. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1974. [Google Scholar]
- Sommeechai, M.; Wachrinrat, C. Effects of stand structural characteristics on the microclimate of an urban green space in Phra Pradaeng district, Samut Prakan province, Thailand. In Proceedings of the 2nd International Conference on Tropical Biology “Ecological Restoration in Southeast Asia: Challenges, Gains, and Future Directions”, SEAMEO BIOTROP, Bogor, Indonesia, 12–13 October 2015. [Google Scholar]
- The Forest Herbarium. Thai Plants Names Tem Smitinand (Revised Edition); Royal Forest Department: Bangkok, Thailand, 2014.
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1998. [Google Scholar]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Asanok, L.; Kamyo, T.; Norsaengsri, M.; Salinla-um, P.; Rodrungruang, K.; Karnasuta, N.; Navakam, S.; Pattanakiat, S.; Marod, D.; Duengkae, P.; et al. Vegetation community and factors that affect the woody species composition of riparian forests growing in an urbanizing landscape along the Chao Phraya River, central Thailand. Urban For. Urban Green. 2017, 28, 138–149. [Google Scholar] [CrossRef]
- Leksungnoen, N.; Eiadthong, W.; Kjelgren, R. Thailand’s catastrophic flood: Bangkok tree mortality as a function of taxa, habitat, and tree size. Urban For. Urban Green. 2017, 22, 111–119. [Google Scholar] [CrossRef]
- Ayala-Izurieta, J.; Márquez, C.; García, V.; Recalde-Moreno, C.; Rodríguez-Llerena, M.; Damián-Carrión, D. Land cover classification in an Ecuadorian mountain geosystem using a random forest classifier, spectral vegetation indices, and ancillary geographic data. Geosciences 2017, 7, 34. [Google Scholar] [CrossRef]
- Marchetti, Z.Y.; Minotti, P.G.; Ramonell, C.G.; Schivo, F.; Kandus, P. NDVI patterns as indicator of morphodynamic activity in the middle Paraná River floodplain. Geomorphology 2016, 253, 146–158. [Google Scholar] [CrossRef]
- Arekhi, M.; Yılmaz, O.Y.; Yılmaz, H.; Akyüz, Y.F. Can tree species diversity be assessed with Landsat data in a temperate forest? Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Seshasai, M.V.R.; Reddy, C.S.; Dadhwal, V.K. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
- Mapfumo, R.B.; Murwira, A.; Masocha, M.; Andriani, R. The relationship between satellite-derived indices and species diversity across African savanna ecosystems. Int. J. Appl. Earth Obs. Geoinform. 2016, 52, 306–317. [Google Scholar] [CrossRef]
- Madonsela, S.; Cho, M.A.; Ramoelo, A.; Mutanga, O. Remote sensing of species diversity using Landsat 8 spectral variables. ISPRS J. Photogramm. Remote Sens. 2017, 133, 116–127. [Google Scholar] [CrossRef]
- Intasen, M.; Hauer, R.J.; Werner, L.P.; Larsen, E. Urban forest assessment in Bangkok, Thailand. J. Sustain. For. 2017, 36, 148–163. [Google Scholar] [CrossRef]
- Sampanpanish, P.; Jamroenprucksa, M. Ecological characteristics of homegarden agroforestry system in Amphoe Muang, Changwat Nonthaburi. Thai J. For. 1994, 13, 114–124. [Google Scholar]
- Campbell, K.; Chan, L.; Custot, J.; Elmqvist, T.; Galt, R.; Katti, M.; Mader, A.; Persic, A.; Puppim de Oliveira, J.; Rudd, A. Cities and Biodiversity Outlook: Action and Policy A Global Assessment of the Links between Urbanization, Biodiversity, and Ecosystem Services; Secretariate of the Convention on Biological Diversity: Montreal, QC, Canada, 2012. [Google Scholar]
- Yan, P.; Yang, J. Species diversity of urban forests in China. Urban For. Urban Green. 2017, 28, 160–166. [Google Scholar] [CrossRef]
- Kiratiprayoon, S. Comparative Study on the Structure of the Rattan Bearing Tropical Rain Forest; Kasetsart University: Bangkok, Thailand, 1986. [Google Scholar]
- Bunyavejchewin, S.; Lafranki, J.V.; Pattapong, P.; Kanzaki, M.; Itoh, A.; Yamakura, T.; Ashton, P.S. Topographic analysis of a large-scale research plot in seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, Thailand. Tropics 1998, 8, 45–60. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens. Environ. 2000, 73, 87–102. [Google Scholar] [CrossRef]
- Meng, J.; Li, S.; Wang, W.; Liu, Q.; Xie, S.; Ma, W. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images. Remote Sens. 2016, 8, 125. [Google Scholar] [CrossRef]
- Franklin, S.E.; Hall, R.J.; Moskal, L.M.; Maudie, A.J.; Lavigne, M.B. Incorporating texture into classification of forest species composition from airborne multispectral images. Int. J. Remote Sens. 2000, 21, 61–79. [Google Scholar] [CrossRef]
- Andersen, H.-E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinform. 2011, 13, 701–710. [Google Scholar] [CrossRef]
- Wallner, A.; Elatawneh, A.; Schneider, T.; Knoke, T. Estimation of forest structural information using RapidEye satellite data. Forestry 2015, 88, 96–107. [Google Scholar] [CrossRef]
- Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ. 2006, 102, 390–401. [Google Scholar] [CrossRef]
Urban Forest Types | Rehabilitation Forest | Home-Garden | Mangrove | Park | |||||
---|---|---|---|---|---|---|---|---|---|
Plot 1 | Plot 2 | Plot 3 | Plot 6 | Plot 4 | Plot 8 | Plot 5 | Plot 7 | Plot 9 | |
Number of families | 10 | 15 | 13 | 17 | 15 | 8 | 11 | 8 | 2 |
Number of species | 15 | 23 | 19 | 25 | 17 | 11 | 15 | 13 | 2 |
Plot density (trees/ha) | 1268 | 988 | 716 | 892 | 820 | 980 | 840 | 360 | 104 |
Average DBH (cm) | 12.9 | 13.3 | 13.2 | 9.7 | 11.8 | 9.6 | 12.9 | 8.2 | 24.7 |
Average height (m) | 8.4 | 8.2 | 8.5 | 6.7 | 5.1 | 6.6 | 7.6 | 5 | 7.5 |
Total basal area (m2/ha) | 22.8 | 18.6 | 14.6 | 10.1 | 12.5 | 9.6 | 13.2 | 2.3 | 5.2 |
Canopy density (%) | 91.8 | 67.2 | 82.4 | 38.2 | 57.5 | 69 | 91.8 | 19.6 | 25 |
Number of canopy layers | 4 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 1 |
Shannon-Wiener index | 1.78 | 2.39 | 2.12 | 2.59 | 1.57 | 1.39 | 1.88 | 1.86 | 0.43 |
Exponential Shannon index (1D) | 5.93 | 10.78 | 8.37 | 13.32 | 4.83 | 4.02 | 6.53 | 6.40 | 1.54 |
Shannon’s equitability (EH) | 0.46 | 0.53 | 0.51 | 0.55 | 0.38 | 0.40 | 0.48 | 0.50 | 0.43 |
No. | Scientific Name | Rehabilitation Forest | Home-Garden | Mangrove | Park | |||||
---|---|---|---|---|---|---|---|---|---|---|
Plot 1 | Plot 2 | Plot 3 | Plot 6 | Plot 4 | Plot 8 | Plot 5 | Plot 7 | Plot 9 | ||
1 | Acacia auriculaeformis | 5.2 | ||||||||
2 | Adenanthera pavonina | 3.9 | 4.1 | |||||||
3 | Antidesma ghaesembilla | 4.7 | 4.6 | 9.6 | 18.5 | 7.9 | 1.9 | 112.6 | ||
4 | Areca catechu | 1.3 | 8.9 | 23.5 | 3.9 | |||||
5 | Artocarpus heterophyllus | 11.3 | ||||||||
6 | Averrhoa carambola | 1.7 | ||||||||
7 | Azadirachta indica | 8.5 | 19.0 | 6.8 | 2.8 | 5.8 | 3.6 | |||
8 | Bambusa spp. | 1.7 | ||||||||
9 | Barringtonia acutangula | 1.7 | 4.0 | 3.7 | ||||||
10 | Barringtonia racemosa | 1.3 | ||||||||
11 | Bauhinia purpurea | 1.3 | ||||||||
12 | Bruguiera sexangula | 1.4 | ||||||||
13 | Calophyllum inophyllum | 1.3 | ||||||||
14 | Caryota bacsonensis | 21.8 | 17.5 | 4.1 | 23.6 | 17.2 | ||||
15 | Cassia fistula | 1.8 | ||||||||
16 | Cassia siamea | 57.9 | 4.1 | 5.1 | ||||||
17 | Cerbera odollam | 59.6 | 73.2 | 48.8 | 13.1 | 80.8 | 42.5 | |||
18 | Cocos nucifera | 103.9 | 73.0 | 24.7 | 59.7 | 101.3 | 24.9 | 18.3 | 220.9 | |
19 | Delonix regia | 3.8 | ||||||||
20 | Dolichandrone spathacea | 1.4 | 1.7 | 2.2 | ||||||
21 | Elaeocarpus hygrophilus | 1.3 | 1.3 | 1.3 | 3.6 | |||||
22 | Erythrina fusca | 16.0 | 4.4 | 43.4 | 13.8 | |||||
23 | Ficus altissima | 3.9 | ||||||||
24 | Ficus religiosa | 10.9 | ||||||||
25 | Ficus spp. | 1.3 | 8.8 | 10.5 | 2.6 | |||||
26 | Hibiscus tiliaceus | 30.8 | 1.8 | 37.9 | ||||||
27 | Hopea odorata | 1.4 | 11.3 | |||||||
28 | Lagerstroemia loudonii | 1.3 | ||||||||
29 | Lepisanthes rubiginosa | 5.2 | 3.8 | 1.8 | 1.8 | |||||
30 | Leucaena leucocephala | 5.3 | 21.1 | 12.6 | 20.7 | 22.7 | ||||
31 | Mangifera indica | 35.6 | ||||||||
32 | Morinda citrifolia | 1.4 | ||||||||
33 | Musa spp. | 108.2 | 10.0 | |||||||
34 | Nypa fruticans | 1.2 | 35.3 | |||||||
35 | Peltophorum dasyrachis | 8.5 | 79.1 | |||||||
36 | Peltophorum pterocarpum | 2.1 | 6.9 | 1.9 | ||||||
37 | Phyllanthus acidus | 3.6 | ||||||||
38 | Pithecellobium dulce | 2.8 | 1.7 | 24.1 | 4.0 | 1.8 | 9.7 | |||
39 | Psidium guajava | 1.7 | ||||||||
40 | Pterocarpus indicus | 27.1 | 2.6 | 39.6 | ||||||
41 | Samanea saman | 4.3 | 8.2 | |||||||
42 | Senna siamea | 40.4 | ||||||||
43 | Sonneratia caseolaris | 4.4 | 65.6 | 3.7 | ||||||
44 | Sonneratia ovata | 3.7 | ||||||||
45 | Streblus asper | 64.7 | 21.0 | 43.8 | 7.9 | 144.8 | 2.2 | 4.7 | ||
46 | Swietenia macrophylla | 5.8 | 11.0 | |||||||
47 | Syzygium cumini | 1.4 | 1.7 | |||||||
48 | Syzygium malaccense | 3.6 | ||||||||
49 | Tabebuia rosea | 3.7 | 1.9 | |||||||
50 | Tamarindus indica | 3.5 | 13.3 | 2.8 | ||||||
51 | Terminalia catappa | 4.0 | 28.6 | 1.8 | 7.8 | 39.5 | 28.5 | 15.0 | ||
52 | Ziziphus mauritiana | 1.8 |
Urban Forest Types | Rehabilitation Forest | Home-Garden | Mangrove | Park | |||||
---|---|---|---|---|---|---|---|---|---|
Plot 1 | Plot 2 | Plot 3 | Plot 6 | Plot 4 | Plot 8 | Plot 5 | Plot 7 | Plot 9 | |
NDVI | 0.481 | 0.471 | 0.466 | 0.432 | 0.422 | 0.170 | 0.436 | 0.228 | 0.156 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommeechai, M.; Wachrinrat, C.; Dell, B.; Thangtam, N.; Srichaichana, J. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok. Forests 2018, 9, 36. https://doi.org/10.3390/f9010036
Sommeechai M, Wachrinrat C, Dell B, Thangtam N, Srichaichana J. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok. Forests. 2018; 9(1):36. https://doi.org/10.3390/f9010036
Chicago/Turabian StyleSommeechai, Montathip, Chongrak Wachrinrat, Bernard Dell, Nipon Thangtam, and Jamroon Srichaichana. 2018. "Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok" Forests 9, no. 1: 36. https://doi.org/10.3390/f9010036
APA StyleSommeechai, M., Wachrinrat, C., Dell, B., Thangtam, N., & Srichaichana, J. (2018). Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok. Forests, 9(1), 36. https://doi.org/10.3390/f9010036