Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. The Modern Agricultural Frontier: A Conceptual Framework
2.2.1. Agricultural Suitability
2.2.2. Accessibility
2.2.3. Land Use and Land-Use Regulations
2.2.4. Land Price Speculation
2.3. Identification of Areas Suitable for Soy Expansion
2.3.1. Soy Occurrence
2.3.2. Environmental and Socio-Economic Variables
2.3.3. MaxEnt Calibration and Output
2.4. Impact of Predicted Soy Expansion
2.5. Soy Expansion Simulation
2.6. Model Validation
3. Results
3.1. Sensitivity Analysis and Model Validation
3.2. Simulated Changes in Soy Expansion Probabilities across Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bickel, U.; Dros, J.M. The Impacts of Soybean Cultivation on Brazilian Ecosystems. Available online: http://assets.panda.org/downloads/impactsofsoybean.pdf (accessed on 9 February 2017).
- Nepstad, D.C.; Stickler, C.M.; Almeida, O.T. Globalization of the Amazon soy and beef industries: Opportunities for conservation. Conserv. Biol. 2006, 20, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, D.; Killick, E.; Reis, E.J. Soybeans, poverty and inequality in the Brazilian Amazon. World Dev. 2013, 52, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Boucher, D.; Roquemore, S.; Fitzhugh, E. Brazil’s success in reducing deforestation. Trop. Conserv. Sci. 2013, 6, 426–445. [Google Scholar] [CrossRef]
- Nepstad, D.; Soares-Filho, B.S.; Merry, F.; Lima, A.; Moutinho, P.; Carter, J.; Bowman, M.; Cattaneo, A.; Rodrigues, H.; Schwartzman, S.; et al. The end of deforestation in the Brazilian Amazon. Science 2009, 326, 1350–1351. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed]
- Arima, E.Y.; Richards, P.; Walker, R.; Caldas, M.M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 2011, 6, 024010. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L.; Liska, A.J.; Burke, M.B.; Falcon, W.P.; Gaskell, J.C.; Rozelle, S.D.; Cassman, K.G. The ripple effect: Biofuels, food security, and the Environment. Environ. Sci. Policy Sustain. Dev. 2007, 49, 30–43. [Google Scholar] [CrossRef]
- Gasparri, N.I.; le Polain de Waroux, Y. The coupling of South American soybean and cattle production frontiers: New challenges for conservation policy and land change science. Conserv. Lett. 2015, 8, 290–298. [Google Scholar] [CrossRef] [Green Version]
- de Waroux, Y.P.; Garrett, R.D.; Heilmayr, R.; Lambin, E.F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl. Acad. Sci. USA 2016, 113, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Vera-Diaz, M.C.; Kaufmann, R.K.; Nepstad, D.C. The Environmental Impacts of Soybean Expansion and Infrastructure Development in Brazil’s Amazon Basin; Working Paper; Global Development and Environment Institute, Tufts University: Medford, MA, USA, 2009. [Google Scholar]
- Garrett, R.D.; Lambin, E.F.; Naylor, R.L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 2013, 31, 385–396. [Google Scholar] [CrossRef]
- Lima, M.; Skutsch, M.; de Medeiros Costa, G. Deforestation and the social impacts of soy for biodiesel: Perspectives of farmers in the South Brazilian Amazon. Ecol. Soc. 2011, 16, art4. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Munger, J.; L’Roe, J.; Barreto, P.; Pereira, R.; Christie, M.; Amaral, T.; Walker, N.F. Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Conserv. Lett. 2016, 9, 32–42. [Google Scholar] [CrossRef]
- Barretto, A.G.O.P.; Berndes, G.; Sparovek, G.; Wirsenius, S. Agricultural intensification in Brazil and its effects on land-use patterns: An analysis of the 1975–2006 period. Glob. Chang. Biol. 2013, 19, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Aragao, L.E.O.C.; Barlow, J.; Barreto, P.; Berenguer, E.; Bustamante, M.; Gardner, T.A.; Lees, A.C.; Lima, A.; Louzada, J.; et al. Brazil’s environmental leadership at risk. Science 2014, 346, 706–707. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; da Motta, R.S.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Pesquisas Espaciais (INPE) Projeto PRODES. Montitoramento Da Floresta Amazônica Por Satélite. Available online: http://www.obt.inpe.br/prodes/index.php (accessed on 26 June 2018).
- Sparovek, G.; Barretto, A.G.O.P.; Matsumoto, M.; Berndes, G. Effects of governance on availability of land for agriculture and conservation in Brazil. Environ. Sci. Technol. 2015, 49, 10285–10293. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.; Rajao, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s forest code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.B. Soybeans, development and conservation on the Amazon frontier. Dev. Chang. 2005, 36, 375–404. [Google Scholar] [CrossRef]
- Françoso, R.D.; Brandão, R.; Nogueira, C.C.; Salmona, Y.B.; Machado, R.B.; Colli, G.R. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat. Conserv. 2015, 13, 35–40. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Coutinho Cerqueira, G.; Lopes Pennachin, C. Dinamica—A stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Model. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- Vitel, C.S.M.N.; Carrero, G.C.; Cenamo, M.C.; Leroy, M.; Graça, P.M.L.A.; Fearnside, P.M. Land-use change modeling in a Brazilian indigenous reserve: Construction of a reference scenario for the Suruí REDD Project. Hum. Ecol. 2013, 41, 807–826. [Google Scholar] [CrossRef]
- West, T.A.P.; Grogan, K.A.; Swisher, M.E.; Caviglia-Harris, J.L.; Sills, E.; Harris, D.; Roberts, D.; Putz, F.E. A hybrid optimization-agent-based model of REDD+ payments to households on an old deforestation frontier in the Brazilian Amazon. Environ. Model. Softw. 2018, 100, 159–174. [Google Scholar] [CrossRef]
- Kaimowitz, D.; Angelsen, A. Economic Models of Tropical Deforestation: A Review; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 1998; Volume 14, ISBN 979876417X. [Google Scholar]
- de Souza, R.A.; De Marco, P., Jr. The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon. Ecol. Model. 2014, 291, 250–259. [Google Scholar] [CrossRef]
- Amici, V.; Marcantonio, M.; La Porta, N.; Rocchini, D. A multi-temporal approach in MaxEnt modelling: A new frontier for land use/land cover change detection. Ecol. Inform. 2017, 40, 40–49. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Estrella-Bastidas, A.; Molina, J.R.; Herrera, M.Á. Socioecological system and potential deforestation in Western Amazon forest landscapes. Sci. Total Environ. 2018, 644, 1044–1055. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Amuchastegui, N.; Riveros, J.C.; Forrest, J.L. Identifying areas of deforestation risk for REDD+ using a species modeling tool. Carbon Balance Manag. 2014, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Rudorff, B.; Risso, J.; Aguiar, D.; Gonçalves, F.; Salgado, M.; Perrut, J.; Oliveira, L.; Virtusos, M.; Montibeller, B.; Baldi, C.; et al. Análise Geoespacial da Dinâmica das Culturas Anuais no Bioma Cerrado: 2000 a 2014; Agrosatélite Geotecnologia Aplicada Ltda.: Florianópolis, Brasil, 2015; pp. 8–10. [Google Scholar]
- Soares-filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon basin. Nature 2006, 440, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Ratter, J.A.; Ribeiro, J.F.; Bridgewater, S. The Brazilian Cerrado vegetation and threats to its biodiversity. Ann. Bot. 1997, 80, 223–230. [Google Scholar] [CrossRef]
- Boucher, D.; Elias, P.; Lininger, K.; May-Tobin, C.; Roquemore, S.; Saxon, E. The Root of the Problem: What’s Driving Tropical Deforestation Today? Boucher, D., Elias, P., Lininger, K., May-Tobin, C., Roquemore, S., Saxon, E., Eds.; Union of Concerned Scientists: Cambridge, MA, USA, 2011. [Google Scholar]
- Zak, M.R.; Cabido, M.; Cáceres, D.; Díaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ. Manag. 2008, 42, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.; Alencar, A.; Nepstad, D.; Cerqueira, G.; del Carmen Vera Diazc, M.; Rivero, S.; Solorzano, L.; Voll, E. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: The Santarem-Cuiaba corridor. Glob. Chang. Biol. 2004, 10, 745–764. [Google Scholar] [CrossRef]
- Toledo, M. Os processos de modernização agrícola na região amazônica: Transformações recentes na dinâmica produtiva do município de Santarém (Pará). Geosul 2011, 26, 77–97. [Google Scholar] [CrossRef]
- Brandão, F.; Schoneveld, G. The State of Oil Palm Development in the Brazilian Amazon: Trends, Value Chain Dynamics, and Business Models; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2015. [Google Scholar]
- Jepson, W.E. Producing a modern agricultural frontier: Firms and cooperatives in eastern Mato Grosso, Brazil. Econ. Geogr. 2006, 82, 289–316. [Google Scholar] [CrossRef]
- Fearnside, P.M. Avança Brasil: Environmental and social consequences of Brazil’s planned infrastructure in Amazonia. Environ. Manag. 2002, 30, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Amazon dams and waterways: Brazil’s Tapajós Basin plans. AMBIO 2015, 44, 426–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millikan, B. The Amazon: Dirty dams, dirty politics and the myth of clean energy. Tipití J. Soc. Anthropol. Lowl. South Am. 2014, 12, 134–138. [Google Scholar]
- Le Tourneau, F.-M. Is Brazil now in control of deforestation in the Amazon? Cybergeo 2016, 769. [Google Scholar] [CrossRef]
- Pfaff, A.; Robalino, J.; Herrera, D.; Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: Examining conservation—Development interactions to inform planning. PLoS ONE 2015, 10, e0129460. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.J.; Hanauer, M.M.; Miteva, D.A.; Nelson, J.L.; Pattanayak, S.K.; Nolte, C.; Sims, K.R.E. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proc. Natl. Acad. Sci. USA 2015, 112, 7420–7425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.; Herrera, S. Biofuels in Brazil: Debates and impacts. J. Peasant Stud. 2010, 37, 749–768. [Google Scholar] [CrossRef]
- Fearnside, P.M. Brazil’s Cuiabá-Santarém (BR-163) Highway: The environmental cost of paving a soybean corridor through the Amazon. Environ. Manag. 2007, 39, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Martins, H.; Araújo, E.; Vedoveto, M.; Monteiro, D.; Barreto, P. Desmatamento em Áreas Protegidas Reduzidas na Amazônia; IMAZON: Belém, Brazil, 2014. [Google Scholar]
- Bowman, M.S.; Soares-Filho, B.S.; Merry, F.D.; Nepstad, D.C.; Rodrigues, H.; Almeida, O.T. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy 2012, 29, 558–568. [Google Scholar] [CrossRef]
- Pacheco, P. Actor and frontier types in the Brazilian Amazon: Assessing interactions and outcomes associated with frontier expansion. Geoforum 2012, 43, 864–874. [Google Scholar] [CrossRef]
- Richards, P.D.; Walker, R.T.; Arima, E.Y. Spatially complex land change: The indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Chang. 2014, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Twenty-First International Conference on Machine Learning—ICML ’04; ACM Press: New York, NY, USA, 2004; Volume 69, p. 83. [Google Scholar]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Dudík, M.; Phillips, S.J.; Schapire, R.E. Performance Guarantees for Regularized Maximum Entropy Density Estimation. In Proceedings of the 17th Annual Conference on Computational Learning Theory, Banff, AB, Canada, 1–4 July 2004; pp. 472–486. [Google Scholar]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. 2017. Available online: https://CRAN.R-project.org/package=raster (accessed on 23 January 2017).
- Bivand, R.; Lewin-Koh, N. Maptools: Tools for Reading and Handling Spatial Objects. 2017. Available online: https://CRAN.R-project.org/package=maptools (accessed on 23 January 2017).
- GDAL Development Team. GDAL—Geospatial Data Abstraction Library. 2016. Available online: http://gdal.osgeo.org (accessed on 23 January 2017).
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: https://www.r-project.org/ (accessed on 30 November 2017).
- WorldClim. Global Climate Data: Free Climate Data for Ecological Modeling and GIS. Available online: http://www.worldclim.org/bioclim (accessed on 24 January 2017).
- IBGE/EMBRAPA. Mapa de Solos do Brasil (1:5,000,000). Available online: http://mapas.ibge.gov.br (accessed on 3 November 2016).
- EMBRAPA. Brasil em Relevo. Available online: http://www.relevobr.cnpm.embrapa.br (accessed on 19 September 2017).
- IBGE. Atlas Nacional Digital do Brasil. 2010. Available online: http://www.ibge.gov.br/apps/atlas_nacional/ (accessed on 15 January 2017).
- Ministério dos Transportes, Portos e Aviação Civil. Base de Dados Georreferenciados PNLT 2010. Available online: http://www.transportes.gov.br/conteudo/2822-base-de-dados-georreferenciados-pnlt-2010.html (accessed on 5 February 2017).
- Departamento Nacional de Infraestrutura de Transportes (DNIT). VGeo—Visualizador de Informações Geográficas. Available online: http://servicos.dnit.gov.br/vgeo/ (accessed on 4 April 2017).
- MapBiomas Project. Collection 1 of Brazilian Land Cover & Use Map Series. Available online: http://mapbiomas.org/pages/database/mapbiomas_collection# (accessed on 13 January 2017).
- INCRA. Assentamentos Rurais (Base Digital Georreferenciada). Available online: http://acervofundiario.incra.gov.br/i3geo/ogc/index.php (accessed on 17 March 2017).
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FNP Consultoria & Comércio. Anuário da Agricultura Brasileira de 2014; FNP Consultoria & Comércio: São Paulo, Brazil, 2014. [Google Scholar]
- EMBRAPA. Tecnologias de produção de soja—Região central do Brasil 2012 e 2013. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/904487/tecnologias-de-producao-de-soja---regiao-central-do-brasil-2012-e-2013 (accessed on 7 April 2017).
- Jasinski, E.; Morton, D.; DeFries, R.; Shimabukuro, Y.; Anderson, L.; Hansen, M. Physical landscape correlates of the expansion of mechanized agriculture in Mato Grosso, Brazil. Earth Interact. 2005, 9, 1–18. [Google Scholar] [CrossRef]
- Biber, D.; Freudenberger, L.; Ibisch, P.L. INSENSA-GIS: An Open-Source Software Tool for GIS Data Processing and Statistical Analysis. 2011. Available online: https://insensa.org/ (accessed on 29 November 2016).
- Schielein, J.; Ponzoni Frey, G.; Miranda Arana, A.J. Friction Map for Brazil in 2014. Available online: https://doi.org/10.5281/zenodo.557151 (accessed on 25 April 2017).
- Pozzi, F.; Robinson, T.; Nelson, A. Accessibility Mapping and Rural Poverty in the Horn of Africa; Working Paper; Pro-Poor Livestock Policy Initiative, FAO: Rome, Italy, 2010. [Google Scholar]
- CSR Maps. Centro de Sensoriamento Remoto da Universidade Federal de Minas Gerais (CSR/UFMG). Available online: http://maps.csr.ufmg.br/ (accessed on 7 January 2017).
- Minella, A. Monetary policy and inflation in Brazil (1975–2000): A VAR estimation. Rev. Bras. Econ. 2003, 57, 605–635. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística Área Urbana (Base Digital Georreferenciada). Available online: http://downloads.ibge.gov.br/downloads_geociencias.htm (accessed on 2 April 2017).
- Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente Projeto do Ministério do Meio Ambiente de Conservação e Utilização da Diversidade Biológica Brasileira. Áreas Prioritárias (Base Digital Georreferenciada). Available online: http://www.mma.gov.br/biodiversidade/biodiversidade-brasileira/áreas-prioritárias/item/489 (accessed on 3 February 2017).
- Soares-Filho, B.; Rajão, R.; Merry, F.; Rodrigues, H.; Davis, J.; Lima, L.; Macedo, M.; Coe, M.; Carneiro, A.; Santiago, L. Brazil’s market for trading forest certificates. PLoS ONE 2016, 11, e0152311. [Google Scholar] [CrossRef] [PubMed]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- van Vliet, J.; Hagen-Zanker, A.; Hurkens, J.; van Delden, H. A fuzzy set approach to assess the predictive accuracy of land use simulations. Ecol. Model. 2013, 261–262, 32–42. [Google Scholar] [CrossRef]
- Visser, H.; de Nijs, T. The map comparison kit. Environ. Model. Softw. 2006, 21, 346–358. [Google Scholar] [CrossRef]
- Houghton, R.A.; Skole, D.L.; Nobre, C.A.; Hackler, J.L.; Lawrence, K.T.; Chomentowski, W.H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 2000, 403, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.O.; Hardiono, M.; Meijaard, E. Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia. Environ. Manag. 2011, 48, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.S. An assessment of deforestation models for reducing emissions from deforestation and forest degradation (REDD). Trans. GIS 2010, 14, 631–654. [Google Scholar] [CrossRef]
- Malek, Ž.; Boerboom, L.; Glade, T. Future forest cover change scenarios with implications for landslide risk: An example from Buzau Subcarpathians, Romania. Environ. Manag. 2015, 56, 1228–1243. [Google Scholar] [CrossRef] [PubMed]
- Vieilledent, G.; Grinand, C.; Vaudry, R. Forecasting deforestation and carbon emissions in tropical developing countries facing demographic expansion: A case study in Madagascar. Ecol. Evol. 2013, 3, 1702–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, X.; Zheng, W.; Zhou, T.; Liu, X. A CA-based land system change model: LANDSCAPE. Int. J. Geogr. Inf. Sci. 2017, 31, 1798–1817. [Google Scholar] [CrossRef]
- Ke, X.; van Vliet, J.; Zhou, T.; Verburg, P.H.; Zheng, W.; Liu, X. Direct and indirect loss of natural habitat due to built-up area expansion: A model-based analysis for the city of Wuhan, China. Land Use Policy 2018, 74, 231–239. [Google Scholar] [CrossRef]
- Altartouri, A.; Nurminen, L.; Jolma, A. Spatial neighborhood effect and scale issues in the calibration and validation of a dynamic model of Phragmites australis distribution—A cellular automata and machine learning approach. Environ. Model. Softw. 2015, 71, 15–29. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Pontius, R. Spatially-explicit simulation of urban growth through self-adaptive genetic algorithm and cellular automata modelling. Land 2014, 3, 719–738. [Google Scholar] [CrossRef]
- Vera-Diaz, M.; del, C.; Kaufmann, R.K.; Nepstad, D.C.; Schlesinger, P. An interdisciplinary model of soybean yield in the Amazon Basin: The climatic, edaphic, and economic determinants. Ecol. Econ. 2008, 65, 420–431. [Google Scholar] [CrossRef]
- Rodrigues, T.E.G. Agricultural explosion in Brazil: Exploring the impacts of the Brazilian agricultural development over the Amazon. Int. J. Sociol. Agric. Food 2009, 16, 1–12. [Google Scholar]
- Putz, F.E.; Ellis, P.W.; Griscom, B.W. Topographic restrictions on land-use practices: Consequences of different pixel sizes and data sources for natural forest management policies in the tropics. For. Ecol. Manag. 2018, 422, 108–113. [Google Scholar] [CrossRef]
- Börner, J.; Wunder, S.; Wertz-Kanounnikoff, S.; Tito, M.R.; Pereira, L.; Nascimento, N. Direct conservation payments in the Brazilian Amazon: Scope and equity implications. Ecol. Econ. 2010, 69, 1272–1282. [Google Scholar] [CrossRef]
- Moutinho, P.; Guerra, R.; Azevedo-Ramos, C. Achieving zero deforestation in the Brazilian Amazon: What is missing? Elem. Sci. Anth. 2016, 4, 000125. [Google Scholar] [CrossRef]
- Börner, J.; Marinho, E.; Wunder, S. Mixing carrots and sticks to conserve forests in the Brazilian Amazon: A spatial probabilistic modeling approach. PLoS ONE 2015, 10, e0116846. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Ramos, C.; Moutinho, P. No man’s land in the Brazilian Amazon: Could undesignated public forests slow Amazon deforestation? Land Use Policy 2018, 73, 125–127. [Google Scholar] [CrossRef]
- Godar, J.; Tizado, E.J.; Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 2012, 267, 58–73. [Google Scholar] [CrossRef]
- Fearnside, P.M. Soybean cultivation as a threat to the environment in Brazil. Environ. Conserv. 2001, 28, 23–38. [Google Scholar] [CrossRef]
- Pacheco, P.; Aguilar-Støen, M.; Börner, J.; Etter, A.; Putzel, L.; Diaz, M.D.C.V. Landscape transformation in tropical Latin America: Assessing trends and policy implications for REDD+. Forests 2011, 2, 1–29. [Google Scholar] [CrossRef]
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D.M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, e0176168. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Produção Agrícola Municipal: Culturas Temporárias e Permanentes; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2017.
- van Gelder, J.W.; Dros, J.M. From Rainforest to Chicken Breast: Effects of Soybean Cultivation for Animal Feed on People and Nature in the Amazon Region—A Chain of Custody Study. Available online: http://commodityplatform.org/wp/wp-content/uploads/2007/09/from-rainforest-to-chickenbreast.pdf (accessed on 12 June 2018).
- Garcez, C.A.G.; de Souza Vianna, J.N. Brazilian biodiesel policy: Social and environmental considerations of sustainability. Energy 2009, 34, 645–654. [Google Scholar] [CrossRef]
- Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory. CO2 Emissions (kt). Available online: http://databank.worldbank.org (accessed on 29 June 2018).
- Morton, D.C.; Noojipady, P.; Macedo, M.M.; Gibbs, H.; Victoria, D.C.; Bolfe, E.L. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Glob. Environ. Chang. 2016, 37, 92–101. [Google Scholar] [CrossRef]
Category | Variable | Code | Source/Reference |
---|---|---|---|
Agricultural Suitability | Annual Mean Temperature | bio1 | [66] |
Mean Diurnal Range (Mean of monthly (max temp–min temp)) | bio2 | ||
Isothermality (bio2/bio7) (* 100) | bio3 | ||
Temperature Seasonality (standard deviation * 100) | bio4 | ||
Max Temperature of Warmest Month | bio5 | ||
Min Temperature of Coldest Month | bio6 | ||
Temperature Annual Range (bio5–bio6) | bio7 | ||
Mean Temperature of Wettest Quarter | bio8 | ||
Mean Temperature of Driest Quarter | bio9 | ||
Mean Temperature of Warmest Quarter | bio10 | ||
Mean Temperature of Coldest Quarter | bio11 | ||
Annual Precipitation | bio12 | ||
Precipitation of Wettest Month | bio13 | ||
Precipitation of Driest Month | bio14 | ||
Precipitation Seasonality (Coefficient of Variation) | bio15 | ||
Precipitation of Wettest Quarter | bio16 | ||
Precipitation of Driest Quarter | bio17 | ||
Precipitation of Warmest Quarter | bio18 | ||
Precipitation of Coldest Quarter | bio19 | ||
Soil quality/type | [67] | ||
Elevation | [68] | ||
Slope | authors | ||
Accessibility | Cities | [69] | |
Roads | [70] * | ||
Railroads | [70] | ||
Waterways | [70] | ||
Ports and terminals | [71] | ||
Storage facilities | [70] | ||
Crushing facilities | [70] | ||
Travel cost to cities | dist cities | authors | |
Travel cost to ports and terminals | dist ports | authors | |
Travel cost to storage facilities | dist storage | authors | |
Travel cost to crushing facilities | dist crush | authors | |
Land use and institutions | Land cover (2008–2014) | [72] | |
Settlements | [73] | ||
Protected areas (Sustainable use, Integral protection, Indigenous reserve, Military areas) | [74] | ||
Land price | Agricultural land price | land price A | [75] |
Pastureland price | land price P | [75] | |
Forested land price | land price N | [75] |
Category Roads | 2014 | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|---|
Paved | paved | paved | paved | paved |
Established | unpaved | unpaved | paved | paved |
Natural Surface (Leito Natural) | unpaved | unpaved | paved | paved |
Not informed | unpaved | unpaved | paved | paved |
Under construction of new lane | unpaved | paved | paved | paved |
Under pavement | unpaved | paved | paved | paved |
New lane added | paved | paved | paved | paved |
Planned | removed | unpaved | paved | paved |
Under construction | removed | unpaved | paved | paved |
River crossing | water | water | water | water |
Railroads | ||||
In operation | railway | railway | railway | railway |
Planned | removed | railway | railway | railway |
Under construction | removed | railway | railway | railway |
Suspended traffic | removed | railway | railway | railway |
Not informed | removed | railway | railway | railway |
New Facilities | ||||
Storage | - | - | - | yes |
Crushing | - | - | - | yes |
Scenario | 2014 (Mha) | Scenario 1 (Variation Compared to 2014) | Scenario 2 (Variation Compared to 2014) | Scenario 3 (Variation Compared to 2014) |
---|---|---|---|---|
Total area | 14.66 | 2.45% | 12.97% | 14.57% |
Protected areas and settlements | ||||
Not publicly protected | 14.66 | 2.45% | 2.45% | 2.45% |
Strictly protected | 0.00 | 0.00% | 0.00% | 0.00% |
Sustainable use | 0.00 | 0.00% | 0.00% | 0.00% |
Indigenous territories | 0.00 | 0.00% | 0.00% | 0.00% |
Military | 0.00 | 0.00% | 0.00% | 0.00% |
Settlements | 1.15 | 1.48% | 11.59% | 12.57% |
Land use | ||||
Forest | 0.44 | 9.56% | 38.62% | 51.44% |
Pasture | 9.18 | 1.82% | 10.96% | 11.38% |
Agriculture | 1.77 | 1.08% | 4.07% | 4.63% |
Planted forest | >0.01 | 2.46% | 4.89% | 4.89% |
Coastal zone forest | 0.00 | 0.00% | >0.01 Mha | >0.01 Mha |
Other | 3.22 | 3.98% | 19.98% | 23.83% |
Conservation priority | ||||
High | 0.05 | 2.99% | 5.07% | 5.07% |
Very high | 0.06 | 5.65% | 29.89% | 32.79% |
Extremely High | 3.29 | 3.87% | 23.75% | 24.32% |
Insufficiently known | 0.27 | 5.09% | 14.61% | 14.40% |
New areas identified by regional groups | 0.00 | 0.00% | >0.01 Mha | >0.01 Mha |
Potential biomass (Mg ha−1) | ||||
0–100 | 7.77 | 2.35% | 12.40% | 13.60% |
100–200 | 0.28 | 1.24% | 12.92% | 13.04% |
>200 | 6.61 | 2.63% | 13.53% | 15.65% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, G.P.; West, T.A.P.; Hickler, T.; Rausch, L.; Gibbs, H.K.; Börner, J. Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach. Forests 2018, 9, 600. https://doi.org/10.3390/f9100600
Frey GP, West TAP, Hickler T, Rausch L, Gibbs HK, Börner J. Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach. Forests. 2018; 9(10):600. https://doi.org/10.3390/f9100600
Chicago/Turabian StyleFrey, Gabriel P., Thales A. P. West, Thomas Hickler, Lisa Rausch, Holly K. Gibbs, and Jan Börner. 2018. "Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach" Forests 9, no. 10: 600. https://doi.org/10.3390/f9100600
APA StyleFrey, G. P., West, T. A. P., Hickler, T., Rausch, L., Gibbs, H. K., & Börner, J. (2018). Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach. Forests, 9(10), 600. https://doi.org/10.3390/f9100600