The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Obtaining Data
2.3. Distribution Modeling
2.4. Model Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Soberón, J.; Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 2009, 106, 19644–19650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Tuanmu, M.N. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Perosa, M.; Rojas, J.F.; Villagra, P.E.; Tognelli, M.F.; Carrara, R.; Alvarez, J.A. Distribución potencial de los bosques de Prosopis flexuosa en la Provincia Biogeográfica del Monte (Argentina). Ecol. Austral. 2014, 24, 238–248. [Google Scholar]
- Martínez-Antúnez, P.; Hernández-Díaz, J.C.; Wehenkel, C.; López-Sánchez, C.A. Estimación de la densidad de especies de coníferas a partir de variables ambientales. Madera Bosques 2015, 21, 23–33. [Google Scholar] [CrossRef]
- Sánchez-Cordero, V.; Cirelli, V.; Murguíal, M.; Sarkar, S. Place prioritization for biodiversity representation using species ecological niche modelling. Biodivers. Inform. 2005, 2, 11–23. [Google Scholar] [CrossRef]
- Rodríguez, F.J.; Pereda, M.E. La dinámica espacial de los ecosistemas del estado de Durango. Ra Ximhai 2012, 8, 91–96. [Google Scholar]
- Calderón-Aguilera, L.E.; Rivera-Monroy, V.H.; Porter-Bolland, L.; Martínez-Yrízar, A.; Ladah, L.B.; Martínez-Ramos, M.; Alcocer, J.; Santiago-Pérez, A.L.; Hernandez-Arana, H.A.; Reyes-Gómez, V.M.; et al. An assessment of natural and human disturbance effects on Mexican ecosystems: Current trends and research gaps. Biodivers. Conserv. 2012, 21, 589–617. [Google Scholar] [CrossRef]
- Galicia, L.; Potvin, C.; Messier, C. Maintaining the high diversity of pine and oak species in Mexican temperate forests: A new management approach combining functional zoning and ecosystem adaptability. Can. J. For. Res. 2015, 45, 1358–1368. [Google Scholar] [CrossRef]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Sykes, M.T. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant. Ecol. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Sykes, M.T.; Prentice, I.C.; Cramer, W. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr. 1996, 23, 203–233. [Google Scholar]
- Kearney, M.; Porter, W.P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.C.; Churchill, E.D. The Plant Community; Reinhold Publishing Corp.: New York, NY, USA, 1961; pp. 1–218. [Google Scholar]
- Chapman, S.B. Methods in Plant Ecology; Blackwell Scientific: Oxford, UK, 1976; pp. 1–580. [Google Scholar]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Anderson, R.P.; Peterson, A.T.; Gómez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 2002, 98, 3–16. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Villaseñor, J.L.; López-Mata, L. La región del Bajío, México y la conservación de su diversidad florística. Rev. Mex. Biod. 2015, 86, 799–808. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Ortiz, E.; Villaseñor, J.L.; Espinosa-Garcia, F.J. Ecological niche modeling of invasive plant species according to invasion status and management needs: The case of Chromolaena odorata (Asteraceae) in South Africa. Pol. J. Ecol. 2016, 64, 369–383. [Google Scholar] [CrossRef]
- Townsend, P.; Klusa, D.A. New distributional modelling approaches for gap analysis. Animal Conservation. Zool. Soc. Lond. 2003, 6, 47–54. [Google Scholar] [CrossRef]
- Leal-Nares, O.; Mendoza, M.E.; Pérez-Salicrup, D.; Geneletti, D.; López-Granados, E.; Carranza, E. Distribución potencial del Pinus martinezii: Un modelo espacial basado en conocimiento ecológico y análisis multicriterio. Rev. Mex. Biodivers. 2012, 83, 1152–1170. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef] [PubMed]
- Chefaoui, R.M.; Hortal, J.; Lobo, J.M. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: A case study of Iberian Copris species. Biol. Conserv. 2005, 122, 327–338. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México; Limusa: México, D.F., Mexico, 1978; pp. 1–432. [Google Scholar]
- Silva-Flores, R.; Pérez-Verdín, G.; Wehenkel, C. Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. PLoS ONE 2014, 9, 105034. [Google Scholar] [CrossRef] [PubMed]
- CONAFOR (Comisión Nacional Forestal). Manual and Procedures for Field Sampling—National Forest and Soil Inventory. 2009. Available online: http://www.snieg.mx/contenidos/espanol/iin/Acuerdo_3_X/Manual_y_Procedimientos_para_el_Muestreo_de_Campo_INFyS_2004–2009.pdf (accessed on 17 November 2017).
- Antúnez, P.; Wehenkel, C.; López-Sánchez, C.A.; Hernández-Díaz, J.C. The role of climatic variables for estimating probability of abundance of tree species. Pol. J. Ecol. 2017, 65, 324–338. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Cuervo-Robayo, A.; Téllez-Valdés, O.; Gómez, M.A.; Venegas-Barrera, C.S.; Manjarrez, J.F.; Mártinez-Meyer, E. An update of high-resolution monthly climate surface for Mexico. Int. J. Climatol. 2013, 34, 2427–3437. [Google Scholar] [CrossRef]
- Cruz-Cárdenas, G.; López-Mata, L.; Villaseñor, J.L.; Ortiz, E. Potential species distribution modeling and the use of principal component analysis as predictor variables. Rev. Mex. Biodiver. 2014, 85, 189–199. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Swart, R. IPCC: Special Report on Emissions Scenarios; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Elith, J.; Graham, J.C.H.; Anderson, P.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.; Martínez-Meyer, E.; Nakamura, M.; Araujo, M. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011; pp. 1–314. [Google Scholar]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J. Transferability, sample selection bias and background data in presenceonly modelling: A response to Peterson et al. (2007). Ecography 2008, 31, 272–278. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal component analysis and factor analysis. In Principal Component Analysis; Springer: New York, NY, USA, 1986; pp. 115–128. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 1 January 2017).
- Kuhn, G.M. The phi coefficient as an index of ear differences in dichotic listening. Cortex 1973, 9, 450–457. [Google Scholar] [CrossRef]
- González-Elizondo, M.S.; González-Elizondo, M.; González, L.R.; Enríquez, I.L.; Rentería, F.R.; Flores, J.T. Ecosystems and diversity of the Sierra Madre Occidental. In Merging Science and Management in a Rapidly Changing World: Biodiversity and Management of the Madrean Archipelago III and 7th Conference on Research and Resource Management in the Southwestern Deserts, Tucson, AZ, USA, 1–5 May 2012; Gottfried, G.J., Ffolliott, P.F., Gebow, B.S., Eskew, L.G., Collins, L.C., Eds.; Proceedings RMRS-P-67; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013; pp. 204–211. [Google Scholar]
- Toledo, V.M.; Ordóñez, M. The biodiversity scenario of Mexico: A review of terrestrial habitats. In Biological Diversity of Mexico. Origins and Distribution; Ramamoorthy, T.P., Bye, R., Lot, A., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 757–777. [Google Scholar]
- Challenger, A. Utilización y Conservación de los Ecosistemas Terrestres de México: Pasado, Presente y futuro; Conabio-Instituto de Biología, UNAM-Agrupación Sierra Madre SC. Distrito Federal: Tlalpan, Mexico, 1998. [Google Scholar]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Villalobos, F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Loiselle, B.A.; Howell, C.A.; Graham, C.H.; Goerck, J.M.; Brooks, T.; Smith, K.G.; Williams, P.H. Avoiding pitfalls of using species distribution models in conservation planning. Conserv. Biol. 2003, 17, 1591–1600. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species–climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Carneiro, L.R.D.A.; Lima, A.P.; Machado, R.B.; Magnusson, W.E. Limitations to the use of species-distribution models for environmental-impact assessments in the Amazon. PLoS ONE 2016, 11, e0146543. [Google Scholar] [CrossRef] [PubMed]
- Kadmon, R.; Farber, O.; Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 2003, 13, 853–867. [Google Scholar] [CrossRef]
- Ward, G.; Hastie, T.; Barry, S.; Elith, J.; Leathwick, J.R. Presence-only data and the EM algorithm. Biometrics 2009, 65, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.A.; Cocks, K.D. HABITAT: A procedure for modelling a disjoint environmental envelope for a plant or animal species. Glob. Ecol. Biogeogr. Lett. 1991, 1, 108–118. [Google Scholar] [CrossRef]
- Hunter, P. The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 2007, 8, 316–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antúnez, P.; Hernández-Díaz, J.C.; Wehenkel, C.; Clark-Tapia, R. Generalized models: An application to identify environmental variables that significantly affect the abundance of three tree species. Forests 2017, 8, 59. [Google Scholar] [CrossRef]
- Ackerly, D. Canopy gaps to climate change -extreme events, ecology and evolution. New Phytol. 2003, 160, 2–4. [Google Scholar] [CrossRef]
- Ackerly, D.D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant. Sci. 2003, 164, 165–184. [Google Scholar] [CrossRef]
- Eiserhardt, W.L.; Svenning, J.C.; Borchsenius, F.; Kristiansen, T.; Balslev, H. Separating environmental and geographical determinants of phylogenetic community structure in Amazonian palms (Arecaceae). Bot. J. Linn. Soc. 2013, 171, 244–259. [Google Scholar] [CrossRef]
- Davis, M.B.; Shaw, R.G.; Etterson, J.R. Evolutionary responses to changing climate. Ecology 2005, 86, 1704–1714. [Google Scholar] [CrossRef]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [PubMed]
Species | AUC Values | ||
---|---|---|---|
Past | Present | Future | |
Pinus arizonica Engelm. var. stormiae Martínez | 0.960 | 0.961 | 0.962 |
Pinusstrobiformis Engelm | 0.927 | 0.945 | 0.945 |
Pinus cembroides Zucc | 0.948 | 0.944 | 0.950 |
Pinus cooperi C.E.Blanco | 0.961 | 0.965 | 0.966 |
Pinus durangensis Martínez | 0.915 | 0.909 | 0.908 |
Pinus engelmanni Carr | 0.926 | 0.929 | 0.908 |
Pinus leiophylla Schiede ex Schltdl. et Cham. | 0.954 | 0.937 | 0.943 |
Pinus teocote Schiede ex Schltdl. et Cham. | 0.951 | 0.942 | 0.947 |
Quercus arizonica Sarg | 0.791 | 0.784 | 0.794 |
Quercus crassifolia Humb. & Bonpl. | 0.966 | 0.964 | 0.967 |
Quercus grisea Liebm | 0.942 | 0.939 | 0.939 |
Quercus magnolifolia Née | 0.964 | 0.967 | 0.967 |
Quercus sideroxyla Humb. & Bonpl. | 0.879 | 0.897 | 0.898 |
Acronyms | Description | PC1 | PC2 |
---|---|---|---|
bio_01 | Mean Annual Temperature (°C) | 0.34 | 0.06 |
bio_02 | Mean Diurnal Range (Mean of monthly max. temp. min. temp.) (°C) | 0.93 | 0.07 |
bio_03 | Isothermality (Bio_02/Bio_07) (×100) | 0.31 | −0.41 |
bio_04 | Temperature Seasonality (standard deviation × 100) (Coefficient of Variation) | 0.98 | 0.19 |
bio_05 | Max Temperature of Warmest Month (°C) | −0.31 | 0.13 |
bio_06 | Min Temperature of Coldest Month (°C) | 0.72 | −0.03 |
bio_07 | Temperature Annual Range (Bio_05–Bio_06) (°C) | 0.96 | 0.13 |
bio_08 | Mean Temperature of Wettest Quarter (°C) | 0.19 | 0.13 |
bio_09 | Mean Temperature of Driest Quarter (°C) | 0.44 | 0.16 |
bio_10 | Mean Temperature of Warmest Quarter (°C) | 0.12 | 0.11 |
bio_11 | Mean Temperature of Coldest Quarter (°C) | 0.50 | 0.027 |
bio_12 | Annual Precipitation (mm) | 0.88 | 0.45 |
bio_13 | Precipitation of Wettest Month (mm) | 0.88 | 0.42 |
bio_14 | Precipitation of Driest Month (mm) | 0.22 | 0.49 |
bio_15 | Precipitation Seasonality (Coefficient of Variation) | −0.33 | −0.24 |
bio_16 | Precipitation of Wettest Quarter (mm) | 0.88 | 0.44 |
bio_17 | Precipitation of Driest Quarter (mm) | 0.52 | 0.45 |
bio_18 | Precipitation of Warmest Quarter (mm) | 0.79 | 0.42 |
bio_19 | Precipitation of Coldest Quarter (mm) | 0.72 | 0.43 |
Species Studied | Periods of Time | Past | Present |
---|---|---|---|
P. arizonica | Present | 0.75 | - |
Future | 0.67 | 0.79 | |
P. strobiformis | Present | 0.73 | - |
Future | 0.75 | 0.84 | |
P. cembroides | Present | 0.52 | - |
Future | 0.65 | 0.46 | |
P. cooperi | Present | 0.80 | - |
Future | 0.78 | 0.82 | |
P. duranguensis | Present | 0.72 | - |
Future | 0.73 | 0.82 | |
P. engelmanni | Present | 0.73 | - |
Future | 0.74 | 0.84 | |
P. leiophylla | Present | 0.67 | - |
Future | 0.71 | 0.78 | |
P. teocote | Present | 0.72 | - |
Future | 0.67 | 0.81 | |
Q. arizonica | Present | −0.04 | - |
Future | 0.02 | 0.71 | |
Q. crassifolia | Present | −0.04 | - |
Future | −0.05 | 0.85 | |
Q. grisea | Present | 0.79 | - |
Future | 0.74 | 0.87 | |
Q. magnolifolia | Present | 0.79 | - |
Future | 0.74 | 0.87 | |
Q. sideroxyla | Present | 0.75 | - |
Future | 0.69 | 0.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antúnez, P.; Suárez-Mota, M.E.; Valenzuela-Encinas, C.; Ruiz-Aquino, F. The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario. Forests 2018, 9, 628. https://doi.org/10.3390/f9100628
Antúnez P, Suárez-Mota ME, Valenzuela-Encinas C, Ruiz-Aquino F. The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario. Forests. 2018; 9(10):628. https://doi.org/10.3390/f9100628
Chicago/Turabian StyleAntúnez, Pablo, Mario Ernesto Suárez-Mota, César Valenzuela-Encinas, and Faustino Ruiz-Aquino. 2018. "The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario" Forests 9, no. 10: 628. https://doi.org/10.3390/f9100628
APA StyleAntúnez, P., Suárez-Mota, M. E., Valenzuela-Encinas, C., & Ruiz-Aquino, F. (2018). The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario. Forests, 9(10), 628. https://doi.org/10.3390/f9100628