Renewable Energy from Forest Residues—How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive
Abstract
:1. Introduction
2. Methods
2.1. Case Study Scenarios
2.2. Sensitivity Analysis
3. Results
3.1. Quantity and Cost Estimates of GHG Offsets for Biomass Substitution Scenarios
3.2. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goerndt, M.; Aguilar, F.X.; Skog, A. Drivers of biomass co-firing in U.S. coal-fired power plants. Biomass Bioenergy 2013, 58, 158–167. [Google Scholar] [CrossRef]
- Luschen, A.; Madlener, R. Economic viability of biomass cofiring in new hard-coal power plants in Germany. Biomass Bioenergy 2013, 57, 33–47. [Google Scholar] [CrossRef]
- Akhtari, S.; Sowlati, T.; Day, K. Economic feasibility of utilizing forest biomass in district energy systems—A review. Renew. Sustain. Energy Rev. 2014, 33, 117–127. [Google Scholar] [CrossRef]
- Berndes, G.; Hoowijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007, p. 863. Available online: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg3_report_mitigation_of_climate_change.htm (accessed on 2 May 2013).
- Guest, G.; Cherubini, F.; Strømman, A.H. Climate impact potential of utilizing forest residues for bioenergy in Norway. Mitig. Adapt. Strateg. Glob. Chang. 2012, 18, 1089–1108. [Google Scholar] [CrossRef]
- Loeffler, D.; Anderson, N. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA. Appl. Energy 2014, 113, 67–77. [Google Scholar] [CrossRef]
- Cannell, M.G.R. Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 2003, 24, 97–116. [Google Scholar] [CrossRef]
- Baxter, L. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 2005, 84, 1295–1302. [Google Scholar] [CrossRef]
- Bauen, A.; Berndes, G.; Junginger, M.; Londo, M.; Vuille, F.; Ball, R.; Bole, T.; Chudziak, C.; Faaij, A.; Mozaffarian, H. Bioenergy—A Sustainable and Reliable Energy Source: A Review of Status and Prospects; IEA Bioenergy: Paris, France, 2009; p. 108. Available online: http://www.ieabioenergy.com/publications/main-report-bioenergy-a-sustainable-and-reliable-energy-source-a-review-of-status-and-prospects/ (accessed on 9 March 2013).
- Agbor, A.; Oyedun, A.O.; Zhang, X.; Kumar, A. Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Appl. Energy 2016, 169, 433–449. [Google Scholar] [CrossRef]
- Moiseyev, A.; Solberg, B.; Kallio, A.M.I. The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU. Energy 2014, 76, 1–7. [Google Scholar] [CrossRef]
- United States Energy Information Administration (U.S. EIA). International Energy Statistics. 2016. Available online: https://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=alltypes&aid=12&cid=regions&syid=2008&eyid=2012&unit=BKWH (accessed on 18 July 2016).
- Basu, P.; Butler, J.; Leon, M.A. Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renew. Energy 2011, 36, 282–288. [Google Scholar] [CrossRef]
- Shabani, N.; Sowlati, T. A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Appl. Energy 2013, 104, 353–361. [Google Scholar] [CrossRef]
- National Energy Board. Canada’s Energy Future 2013: Energy Supply and Demand Projections to 2035; Government of Canada: Ottawa, ON, Canada, 2013; p. 101. Available online: https://www.neb-one.gc.ca/nrg/ntgrtd/ftr/2013/index-eng.html (accessed on 20 April 2013).
- Nunes, L.J.R.; Matias, J.C.O.; Catalao, J.P.S. Biomass waste co-firing with coal applied to the Sines Thermal power plant in Portugal. Fuel 2014, 132, 153–157. [Google Scholar] [CrossRef]
- Sundstrom, S.; Nielsen-Pincus, M.; Moseley, C.; McCaffery, S. Woody biomass use trends, barriers, and strategies: Perspectives of the US Forest Service Managers. J. For. 2012, 110, 16–24. [Google Scholar] [CrossRef]
- McCallum, B. Addressing Barriers Restricting Bioenergy System Applications in Canada; The Canadian Bioenergy Association: Ottawa, ON, Canada, 2008; p. 18. [Google Scholar]
- McKechnie, J.; Colombo, S.; Chen, J.; Mabee, W.; MacLean, H.L. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ. Sci. Technol. 2011, 45, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Ter-Mikaelian, M.T.; Colombo, S.J.; Lovekin, D.; McKechnie, J.; Reynolds, R.; Titus, B.; Laurin, E.; Chapman, A.M.; Chen, J.; MacLean, H.L. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada. GCB Bioenergy 2015, 7, 704–716. [Google Scholar] [CrossRef]
- Gustavsson, L.; Eriksson, L.; Sathre, R. Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement. Appl. Energy 2011, 88, 192–197. [Google Scholar] [CrossRef]
- Gustavsson, L.; Haus, S.; Ortiz, C.A.; Sathre, R.; Le Truong, N. Climate effects of bioenergy from forest residues in comparison to fossil energy. Appl. Energy 2015, 138, 36–50. [Google Scholar] [CrossRef]
- Repo, A.; Känkänen, R.; Tuovinen, J.-P.; Antikainen, R.; Tuomi, M.; Vanhala, P.; Liski, J. Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy 2012, 4, 202–212. [Google Scholar] [CrossRef]
- Jonker, J.G.G.; Junginger, M.; Faaij, A. Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. GCB Bioenergy 2014, 6, 371–389. [Google Scholar] [CrossRef]
- Paré, D.; Bernier, P.; Thiffault, E.; Titus, B. The Potential of Forest Biomass as an Energy Supply for Canada. For. Chron. 2011, 87, 71–77. [Google Scholar] [CrossRef]
- Maung, T.A.; McCarl, B.A. Economic factors influencing potential use of cellulosic crop residues for electricity generation. Energy 2013, 56, 81–91. [Google Scholar] [CrossRef]
- Lamers, P.; Junginger, M.; Dymond, C.C.; Faaij, A. Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy 2014, 6, 44–60. [Google Scholar] [CrossRef]
- Jotzo, F. Australia’s carbon price. Nat. Clim. Chang. 2012, 2, 475–476. [Google Scholar] [CrossRef]
- Radu, A.M. Alberta’s CO2 Reduction Strategy—Assessing the Environmental Integrity of Emissions Trading Schemes. Canadian Institute of Resources Law, 2014; p. 50. Available online: https://dspace.ucalgary.ca/bitstream/1880/50352/1/EmissionsOP45w.pdf (accessed on 12 July 2013).
- Sultana, A.; Kumar, A. Development of tortuosity factor for assessment of lignocellulosic biomass delivery cost to a biorefinery. Appl. Energy 2014, 119, 288–295. [Google Scholar] [CrossRef]
- Natural Resources Canada. Key Facts about Canada’s Forests. 2017. Available online: http://www.nrcan.gc.ca/forests/measuring-reporting/key-forest-facts/17643 (accessed on 6 February 2018).
- Environment Canada. Data for Sustainability of Timber Harvest; Wood Supply, Harvest of Industrial Roundwood, Percent of Wood Supply Harvested, and Total Harvest, Canada, 1990 to 2011. 2014. Available online: https://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=En&n=6647C128-1 (accessed on 23 May 2014).
- Chomitz, K. Evaluating Carbon Offsets from Forestry and Energy Projects: How Do They Compare? 2000. Available online: http://dx.doi.org/10.1596/1813-9450-2357 (accessed on 10 May 2013).
- Marland, G.; Fruit, K.; Sedjo, R. Accounting for sequestered carbon: The question of permanence. Environ. Sci. Policy 2001, 4, 259–269. [Google Scholar] [CrossRef]
- Kalt, G.; Kranzl, L. Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach. Appl. Energy 2011, 88, 3665–3684. [Google Scholar] [CrossRef]
- Natural Resources Canada. Inventory and Land-Use Change. 2013. Available online: http://www.nrcan.gc.ca/forests/climate-change/13111 (accessed on 9 January 2014).
- Yemshanov, D.; McKenney, D.W.; Fraleigh, S.; McConkey, B.; Huffman, T.; Smith, S. Cost estimates of post harvest forest biomass supply for Canada. Biomass Bioenergy 2014, 69, 80–94. [Google Scholar] [CrossRef]
- Holtsmark, B. Harvesting in boreal forests and the biofuel carbon debt. Clim. Chang. 2011, 112, 415–428. [Google Scholar] [CrossRef]
- NRCan (Natural Resources Canada). Coal Facts. 2018. Available online: http://www.nrcan.gc.ca/energy/facts/coal/20071 (accessed on 10 January 2018).
- NRCan (Natural Resources Canada). Natural Gas Facts. 2018. Available online: http://www.nrcan.gc.ca/energy/facts/natural-gas/20067 (accessed on 10 January 2018).
- United States Energy Information Administration (U.S. EIA). Coal Shipments to the Electric Power Sector. Price by Plant State, Annual; 2013. Available online: http://www.eia.gov/beta/coal/data/browser/#/topic/45?agg=1,0&geo=vvvvvvvvvvvvo&rank=g&linechart=COAL.SHIP_PLANT_PRICE.US-TOT.A&columnchart=COAL.SHIP_PLANT_PRICE.US-TOT.A&map=COAL.SHIP_PLANT_PRICE.US-TOT.A&freq=A&start=2012&end=2013&ctype=linechart<ype=pin&rtype=s&maptype=0&rse=0&pin= (accessed on 18 September 2014).
- Bank of Canada (BoC). Financial Markets Department Monthly Average of Exchange Rates. Ottawa, August 2014, Average of 20 Days. 2013. Available online: http://www.bankofcanada.ca/rates/exchange/exchange-rates-in-pdf/ (accessed on 11 August 2014).
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2001, 83, 37–46. [Google Scholar] [CrossRef]
- The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). Lower and Higher Heating Values of Gas, Liquid and Solid Fuels. 2010. Available online: http://greet.es.anl.gov/ (accessed on 20 January 2014).
- United States Energy Information Administration (U.S. EIA). U.S. Natural Gas Electric Power Price. 2014. Available online: http://www.eia.gov/dnav/ng/hist/n3045us3A.htm (accessed on 25 September 2014).
- Natural Resources Canada (NRCan). Natural Gas: A Primer. 2014. Available online: http://www.nrcan.gc.ca/energy/natural-gas/5641 (accessed on 11 June 2014).
- United States Energy Information Administration (U.S. EIA). Voluntary Reporting of Greenhouse Gases Program; Fuel Emission Coefficients. 2011. Available online: http://www.eia.gov/oiaf/1605/coefficients.html (accessed on 9 September 2014).
- United States Energy Information Administration (U.S. EIA). How Much Carbon Dioxide Is Produced When Different Fuels Are Burned? 2014. Available online: http://www.eia.gov/tools/faqs/faq.cfm?id=73&t=11 (accessed on 1 October 2014).
- Hayhoe, K.; Kheshgi, H.; Jain, A.; Wuebbles, D. Substitution of natural gas for coal: Climatic effects of utility sector emissions. Clim. Chang. 2002, 54, 107–139. [Google Scholar] [CrossRef]
- Bouchard, S.; Landry, M.; Gagnon, Y. Methodology for the large scale assessment of the technical power potential of forest biomass: Application to the province of New Brunswick, Canada. Biomass Bioenergy 2013, 54, 1–17. [Google Scholar] [CrossRef]
- Marbe, Â.; Harvey, S.; Berntsson, T. Technical, environmental and economic analysis of co-firing of gasified biofuel in a natural gas combined cycle (NGCC) combined heat and power (CHP) plant. Energy 2006, 31, 1614–1631. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (U.S. EPA). Combined Heat and Power Partnership. Economic Benefits; 2013. Available online: http://www.epa.gov/chp/basic/economics.html (accessed on 5 August 2014).
- Biomass Energy Centre. Calorific Value as a Function of Moisture Content Spreadsheet. 2011. Available online: http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,177178&_dad=portal&_schema=PORTAL (accessed on 22 August 2014).
- Dymond, C.C.; Titus, B.D.; Stinson, G.; Kurz, W.A. Future quantities and spatial distribution of harvesting residue and dead wood from natural disturbances in Canada. For. Ecol. Manag. 2010, 260, 181–192. [Google Scholar] [CrossRef]
- Puddister, D.; Dominy, S.W.J.; Baker, J.A.; Morris, D.M.; Maure, J.; Rice, J.A.; Jones, T.A.; Majumdar, I.; Hazlett, P.W.; Titus, B.D.; et al. Opportunities and challenges for Ontario’s forest bioeconomy. For. Chron. 2011, 87, 468–477. [Google Scholar] [CrossRef]
- Waito, B.; Johnson, L. A National Scan of Regulations and Practices Relevant to Biomass Harvesting; World Wildlife Fund-Canada: Toronto, ON, Canada; The Forest Products Association of Canada: Ottawa, ON, Canada, 2010; Available online: http://www.wwf.ca/newsroom/reports/freshwater/nationalscan.cfm (accessed on 23 June 2013).
- Thiffault, E.; Paré, D.; Bélanger, N.; Munson, A.; Marquis, F. Harvesting intensity at clear-felling in the boreal forest: Impact on soil and foliar nutrient status. Soil Sci. Soc. Am. J. 2006, 70, 691–701. [Google Scholar] [CrossRef]
- Ralevic, P.; Ryans, M.; Cormier, D. Assessing Forest Biomass for Bioenergy: Operational Challenges and Cost Considerations. For. Chron. 2010, 86, 43–50. [Google Scholar] [CrossRef]
- Froese, R.E.; Shonnard, D.R.; Miller, C.A.; Koers, K.P.; Johnson, D.M. An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States. Biomass Bioenergy 2010, 34, 251–262. [Google Scholar] [CrossRef]
- MacDonald, A.J. Producing Energy Chips from Roadside Residue Using a Dynamic Cone-Head 580 Chipper; FP Innovations: Pointe-Claire, QC, Canada, 2009. [Google Scholar]
- Biomass Research and Development Board (BRDB). Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications and the Role of Research. 2008. Available online: www.esd.ornl.gov/eess/8_Increasing_Biofuels_Feedstock_Production.pdf (accessed on 6 May 2013).
- Buongiorno, J.; Zhu, S. Consequences of carbon offset payments for the global forest sector. J. For. Econ. 2013, 19, 384–401. [Google Scholar] [CrossRef]
- Mayfield, C.A.; Foster, C.D.; Smith, C.T.; Gan, J.; Fox, S. Opportunities, barriers and strategies for forest bioenergy and bio-based product development in the Southern United States. Biomass Bioenergy 2007, 31, 631–637. [Google Scholar] [CrossRef]
- Van Kooten, G.C.; Eagle, A.J.; Manley, J.; Smolak, T. How costly are carbon offsets? A meta-analysis of carbon forest sinks. Environ. Sci. Policy 2004, 7, 239–251. [Google Scholar] [CrossRef]
- Van Kooten, G.C.; Laaksonen-Craig, S.; Wang, Y. A meta-regression analysis of forest carbon offset costs. Can. J. For. Res. 2009, 39, 2153–2167. [Google Scholar] [CrossRef]
- Costa, P.M.; Wilson, C. An equivalence factor between CO2 avoided emissions and sequestration-description and applications in forestry. Mitig. Adapt. Strateg. Glob. Chang. 1999, 5, 51–60. [Google Scholar] [CrossRef]
- Kim, M.-K.; McCarl, B.A.; Murray, B.C. Permanence discounting for land-based carbon sequestration. Ecol. Econ. 2008, 64, 763–769. [Google Scholar] [CrossRef]
- Subak, S. Replacing carbon lost from forests: An assessment of insurance, reserves, and expiring credits. Clim. Policy 2003, 3, 107–122. [Google Scholar] [CrossRef]
- Hudson, J.B. Integrated harvesting systems. Biomass Bioenergy 1995, 9, 141–151. [Google Scholar] [CrossRef]
- Volpe, S.; Desrochers, L. Integration of Biomass Recovery with Cut-to-Length Harvesting Operations; FP Innovations: Pointe-Claire, QC, Canada, 2011. [Google Scholar]
Fossil Fuel Substitution Scenario | Nationwide Harvest Level | Residue Extraction Constraints | ||||
---|---|---|---|---|---|---|
Coal | Natural Gas | 2010 | 20-Year Average | Ecological Only * | Ecological and Technical + | |
Scenario 1 | x ** | x | x | |||
Scenario 2 | x | x | x | |||
Scenario 3 | x | x | x | |||
Scenario 4 | x | x | x | |||
Scenario 5 | x | x | x | |||
Scenario 6 | x | x | x | |||
Scenario 7 | x | x | x | |||
Scenario 8 | x | x | x |
CO2e price $ t−1 CO2e | GHG Emission Offsets, Mt CO2e·year−1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ecological Constraints Scenarios | Ecological and Technical Constraints Scenarios | |||||||||||
Baseline | Fossil Fuel Price | Biomass Moisture Content | Biomass Extraction Costs | Baseline | Fossil Fuel Price | Biomass Moisture Content | Biomass Extraction Costs | |||||
+35% | −35% | −35% | +35% | −35% | +35% | −35% | −35% | +35% | −35% | |||
Substitution of Coal by Residue Biomass | ||||||||||||
Scenario 1 | Scenario 2 | |||||||||||
20 | 1.3 | 6.3 | - | 6.3 | - | 13.8 | 1.1 | 5.3 | - | 5.3 | - | 11.7 |
30 | 13.8 | 19.7 | 8.5 | 19.7 | 1.3 | 25.0 | 11.7 | 16.8 | 7.2 | 16.8 | 1.1 | 21.5 |
40 | 25.4 | 27.7 | 21.5 | 27.9 | 14.5 | 30.2 | 21.8 | 23.9 | 18.5 | 24.1 | 12.4 | 26.0 |
50 | 30.2 | 31.3 | 28.5 | 31.3 | 25.4 | 32.2 | 26.0 | 27.0 | 24.6 | 27.0 | 21.8 | 27.8 |
No cap | 35.2 | 30.3 | ||||||||||
Scenario 3 | Scenario 4 | |||||||||||
20 | 1.5 | 6.8 | - | 6.8 | - | 15.2 | 1.2 | 5.8 | - | 5.8 | - | 12.9 |
30 | 15.2 | 21.9 | 9.2 | 21.9 | 1.5 | 28.0 | 12.9 | 18.7 | 7.8 | 18.7 | 1.2 | 24.0 |
40 | 28.4 | 31.1 | 24.1 | 31.5 | 16.0 | 34.1 | 24.4 | 26.8 | 20.6 | 27.0 | 13.6 | 29.3 |
50 | 34.1 | 35.5 | 32.1 | 35.5 | 28.4 | 36.8 | 29.3 | 30.5 | 27.6 | 30.5 | 24.4 | 31.6 |
No cap | 42.8 | 36.7 | ||||||||||
Substitution of Natural Gas by Residue Biomass | ||||||||||||
Scenario 5 | Scenario 6 | |||||||||||
20 | 10.4 | 15.1 | 3.6 | 15.3 | 2.8 | 15.4 | 8.9 | 13.0 | 3.0 | 13.2 | 2.3 | 13.3 |
30 | 15.6 | 17.5 | 11.6 | 17.6 | 10.8 | 17.7 | 13.5 | 15.1 | 9.9 | 15.2 | 9.3 | 15.3 |
40 | 17.7 | 18.5 | 15.9 | 18.6 | 15.6 | 18.6 | 15.3 | 16.0 | 13.7 | 16.0 | 13.5 | 16.1 |
50 | 18.6 | 19.2 | 17.8 | 19.2 | 17.7 | 19.2 | 16.1 | 16.5 | 15.4 | 16.6 | 15.3 | 16.6 |
No cap | 20.1 | 17.3 | ||||||||||
Scenario 7 | Scenario 8 | |||||||||||
20 | 11.6 | 16.9 | 3.9 | 17.1 | 3.0 | 17.3 | 9.8 | 14.5 | 3.3 | 14.7 | 2.5 | 14.9 |
30 | 17.6 | 19.9 | 12.9 | 20.0 | 12.0 | 20.1 | 15.1 | 17.1 | 11.0 | 17.2 | 10.2 | 17.2 |
40 | 20.1 | 21.2 | 17.9 | 21.3 | 17.6 | 21.3 | 17.2 | 18.2 | 15.4 | 18.2 | 15.1 | 18.3 |
50 | 21.3 | 22.1 | 20.2 | 22.2 | 20.1 | 22.2 | 18.3 | 19.0 | 17.4 | 19.0 | 17.2 | 19.1 |
No cap | 24.4 | 20.9 |
Scenario | Parameter Change | Model Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GHG Emission Offset Price $20t−1 CO2e | GHG Emission Offset Price $30t−1 CO2e | GHG Emission Offset Price $40t−1 CO2e | GHG Emission Offset Price $50t−1 CO2e | ||||||||||
Fossil Fuel Price | Moist. Content | Extr. Costs | Fossil Fuel Price | Moist. Content | Extr. Costs | Fossil Fuel Price | Moist. Content | Extr. Costs | Fossil Fuel Price | Moist. Content | Extr. Costs | ||
Substitution of Coal by Residue Biomass | |||||||||||||
Scenario 1 | +35% | 10.50 | 2.86 | 1.22 | 2.58 | 0.26 | 1.22 | 0.10 | 0.46 | ||||
−35% | 2.86 | 10.50 | 26.55 | 1.10 | 1.22 | 2.32 | 0.43 | 0.29 | 0.55 | 0.16 | 0.10 | 0.19 | |
Scenario 2 | +35% | 10.44 | 2.86 | 1.24 | 2.58 | 0.26 | 1.24 | 0.10 | 0.46 | ||||
−35% | 2.86 | 10.44 | 26.54 | 1.11 | 1.24 | 2.37 | 0.44 | 0.30 | 0.55 | 0.16 | 0.10 | 0.19 | |
Scenario 3 | +35% | 10.41 | 2.86 | 1.27 | 2.58 | 0.27 | 1.25 | 0.11 | 0.48 | ||||
−35% | 2.86 | 10.41 | 26.74 | 1.12 | 1.27 | 2.41 | 0.44 | 0.30 | 0.57 | 0.17 | 0.11 | 0.22 | |
Scenario 4 | +35% | 10.42 | 2.86 | 1.28 | 2.58 | 0.28 | 1.26 | 0.11 | 0.48 | ||||
−35% | 2.86 | 10.42 | 26.86 | 1.13 | 1.28 | 2.47 | 0.45 | 0.31 | 0.58 | 0.17 | 0.11 | 0.22 | |
Substitution of Natural Gas by Residue Biomass | |||||||||||||
Scenario 5 | +35% | 1.28 | 2.10 | 0.36 | 0.88 | 0.14 | 0.34 | 0.09 | 0.14 | ||||
−35% | 1.88 | 1.33 | 1.38 | 0.74 | 0.37 | 0.38 | 0.28 | 0.14 | 0.15 | 0.12 | 0.09 | 0.10 | |
Scenario 6 | +35% | 1.31 | 2.11 | 0.36 | 0.89 | 0.14 | 0.34 | 0.08 | 0.14 | ||||
−35% | 1.89 | 1.37 | 1.42 | 0.75 | 0.37 | 0.38 | 0.29 | 0.14 | 0.15 | 0.12 | 0.09 | 0.09 | |
Scenario 7 | +35% | 1.33 | 2.12 | 0.38 | 0.90 | 0.16 | 0.36 | 0.11 | 0.17 | ||||
−35% | 1.90 | 1.38 | 1.43 | 0.75 | 0.39 | 0.41 | 0.30 | 0.17 | 0.18 | 0.14 | 0.12 | 0.12 | |
Scenario 8 | +35% | 1.37 | 2.12 | 0.38 | 0.92 | 0.16 | 0.36 | 0.10 | 0.17 | ||||
−35% | 1.90 | 1.42 | 1.47 | 0.77 | 0.40 | 0.41 | 0.30 | 0.17 | 0.18 | 0.15 | 0.11 | 0.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yemshanov, D.; McKenney, D.W.; Hope, E.; Lempriere, T. Renewable Energy from Forest Residues—How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive. Forests 2018, 9, 79. https://doi.org/10.3390/f9020079
Yemshanov D, McKenney DW, Hope E, Lempriere T. Renewable Energy from Forest Residues—How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive. Forests. 2018; 9(2):79. https://doi.org/10.3390/f9020079
Chicago/Turabian StyleYemshanov, Denys, Daniel W. McKenney, Emily Hope, and Tony Lempriere. 2018. "Renewable Energy from Forest Residues—How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive" Forests 9, no. 2: 79. https://doi.org/10.3390/f9020079
APA StyleYemshanov, D., McKenney, D. W., Hope, E., & Lempriere, T. (2018). Renewable Energy from Forest Residues—How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive. Forests, 9(2), 79. https://doi.org/10.3390/f9020079