Relationship between Soil Characteristics and Stand Structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. Mixed Plantations in the Caijiachuan Watershed: An Application of Structural Equation Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Acquisition and Processing Methods
2.3. Structural Equation Modeling
3. Results
3.1. Model Construction and Correction
3.2. Model Explanation
3.2.1. Relationship between Latent Variables
3.2.2. Relationship between Latent and Observed Variables
4. Discussion
4.1. Topography Mainly Impacted Stand Structure
4.2. Topography Significantly Influenced Soil by Stand Structure Indirectly
4.3. Stand Structure Impacted Soil Properties to a Comparatively Smaller Degree
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bi, H.X.; Li, X.Y.; Li, J.; Guo, M.X.; Liu, X. Study on suitable vegetation cover on Loess area based on soil water balance. Sci. Silvae Sin. 2007, 43, 17–24. [Google Scholar]
- Brzostek, E.R.; Dragoni, D.; Schmid, H.P.; Rahman, A.F.; Sims, D.; Wayson, C.A.; Johnson, D.J.; Phillips, R.P. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Chang. Biol. 2014, 28, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, K.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Li, S.; Liang, W.; Fu, B.J.; Lv, Y.H.; Fu, S.Y.; Wang, S.; Su, H.M. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 2016, 569, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, W.W.; Liu, Y.X.; Fang, X.N.; Feng, Q. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena 2016, 145, 56–67. [Google Scholar] [CrossRef]
- Shi, W.Y.; Du, S.; Joseph, C.M.; Guan, J.H.; Wang, K.B.; Ma, M.G.; Norikazu, Y.; Ryunosuke, T. Physical and biogeochemical controls on soil respiration along a topographical gradient in a semiarid forest. Agric. For. Meteorol. 2017, 247, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yu, P.T.; Wang, J.Z.; Xu, L.H.; Karl, H.F.; Xiong, W. Multifunctional forestry on the Loess Plateau. Earth Environ. Sci. 2017, 4, 79–107. [Google Scholar]
- Zhang, C.; Wang, Z.G.; Ling, F.; Ji, Q.; Meng, F.B. Function evaluation of soil and water conservation and its application in soil and water conservation regionalization. Sci. Soil Water Conserv. 2016, 14, 90–99. [Google Scholar]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.B. The factors controlling species density in herbaceous plant communities: An assessment. Perspect. Plant Ecol. Evol. Syst. 1999, 2, 1–28. [Google Scholar] [CrossRef]
- Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; et al. Does species diversity limit productivity in natural grassland communities? Ecol. Lett. 2007, 10, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.L.; Carstenn, S.; Nungesser, M. Real World Ecology: Large-Scale and Long-Term Case Studies and Methods; Springer: New York, NY, USA, 2009. [Google Scholar]
- Wang, S.L.; Liang, X.J.; Ma, C.; Zhou, J.P. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model. J. Beijing For. Univ. 2017, 39, 1–8. [Google Scholar]
- Grace, J.B.; Anderson, T.M.; Olff, H.; Scheiner, S.M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef]
- Erin, M.M.; Samiran, B.; Edward, W.B.; Linda, M.H.; Donald, D.H. Structural equation modeling reveals complex relationships in mixed forage swards. Crop Prot. 2015, 78, 106–113. [Google Scholar]
- Shipley, B. Cause and Correlation in Biology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jonsson, M.; Wardle, D.A. Structural equation modelling reveals plantcommunity drivers of carbon storage in boreal forest ecosystems. Biol. Lett. 2010, 6, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Lamb, E.G.; Kennedy, N.; Siciliano, S.D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 2011, 338, 483–495. [Google Scholar] [CrossRef]
- Lamb, E.; Shirtliffe, S.; May, W. Structural equation modelling in the plant sciences: An example using yield components in oat. Can. J. Plant Sci. 2011, 91, 603–619. [Google Scholar] [CrossRef]
- Laliberté, E.; Tylianakis, J.M. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 2012, 93, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zheng, S.; Shan, Y.; Taube, F.; Bai, Y. Vertebrate herbivore-induced changes in plants and soils: Linkages to ecosystem functioning in a semi-arid steppe. Funct. Ecol. 2013, 27, 273–281. [Google Scholar] [CrossRef]
- Diouf, A.; Barbier, N.; Lykke, A.M.; Couteron, P.; Deblauwe, V.; Mahamane, A.; Bogaert, J. Relationships between fire history, edaphic factors andwoody vegetation structure and composition in a semi-arid savanna landscape (Niger, West Africa). Appl. Veg. Sci. 2012, 15, 488–500. [Google Scholar] [CrossRef]
- Matías, L.; Castro, J.; Zamora, R. Effect of simulated climate change on soil respiration in a Mediterranean-type ecosystem: Rainfall and habitat type are more important than temperature or the soil carbon pool. Ecosystems 2012, 15, 299–310. [Google Scholar] [CrossRef]
- Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D. Impacts of agricultural land use on biological integrity: A causal analysis. Ecol. Appl. 2011, 21, 3128–3146. [Google Scholar] [CrossRef]
- Leithead, M.; Anand, M.; Duarte, L.D.S.; Pillar, V.D. Causal effects of latitude, disturbance and dispersal limitation on richness in a recovering temperate, subtropical and tropical forest. J. Veg. Sci. 2012, 23, 339–351. [Google Scholar] [CrossRef]
- Virginia, C.; Madhur, A. Assessing ecological integrity: A multi-scale structural and functional approach using Structural Equation Modeling. Ecol. Indic. 2016, 71, 258–269. [Google Scholar]
- Desrochers, R.E.; Kerr, J.T.; Currie, D.J. How, and how much, natural cover loss increases species richness. Glob. Ecol. Biogeogr. 2011, 20, 857–867. [Google Scholar] [CrossRef]
- Gazol, A.; Tamme, R.; Takkis, K.; Kasari, L.; Saar, L.; Helm, A.; Pärtel, M. Landscape- and small-scale determinants of grassland species diversity: Directand indirect influences. Ecography 2012, 35, 944–951. [Google Scholar] [CrossRef]
- Santibáñez-Andrade, G.; Castillo-Argüero, S.; Vega-Peña, E.V.; Lindig-Cisnerosc, R.; Zavala-Hurtado, J.A. Structural equation modeling as a tool to develop conservation strategies using environmental indicators: The case of the forests of the Magdalena river basin in Mexico City. Ecol. Indic. 2015, 54, 124–136. [Google Scholar] [CrossRef]
- Xu, Z. Study on Ecological Function Evaluation and Biodiversity of Typical Forest Stands in Jinxi of the Loess Plateau. Master’s Thesis, Beijing Forestry University, Beijing, China, 2014. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Ruiz, M.A.; Pardo, A.; San Martín, R. Structural equation models. Psychol. Roles 2010, 31, 34–45. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Taylor and Francis Group, LLC: Mahwah, NJ, USA, 2004. [Google Scholar]
- Valdés, A.; García, D. Direct and indirect effects of landscape change on the reproduction of a temperate perennial herb. J. Appl. Ecol. 2011, 48, 1422–1431. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Kenney, M.A.; Richardson, C.J. Examining the relationship between ecosystem structure and function using structural equation modelling: A case study examining denitrification potential in restored wetland soils. Ecol. Model. 2010, 221, 761–768. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Bollen, K.A. Structural Equations with Latent Variables; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Joreskog, K.G.; Sorbom, D. LISREL 8 User’s Reference Guide; Scientific Software International: Chicago, IL, USA, 1993. [Google Scholar]
- Hau, K.T.; Cheng, Z.J. Application and analytical strategies of structural equation modeling. Explor. Psychol. 1999, 19, 54–59. [Google Scholar]
- Schermelleh, K.; Moosbrugger, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. 2003, 8, 23–74. [Google Scholar]
- Wu, M.L. Structural Equation Model—The Operation and Application of AMOS; Chongqing University Press: Chongqing, China, 2010. [Google Scholar]
- Li, H.; Wang, J.K.; Pei, J.B.; Li, S.Y. Equilibrium relationships of soil organic carbon in the main croplands of northeast China based on structural equation modeling. Acta Ecol. Sin. 2015, 35, 517–525. [Google Scholar] [CrossRef]
- Brahim, N.; Blavet, D.; Gallali, T.; Bernoux, M. Application of structural equation modeling for assessing relationships between organic carbon and soil properties in semiarid Mediterranean region. Int. J. Environ. Sci. Technol. 2011, 8, 305–320. [Google Scholar] [CrossRef]
- Hanieh, S.; Lalit, K.; Russell, T.; Christine, S. Airborne LiDAR derived canopy height model reveals a significant difference in radiata pine (Pinus radiata D. Don) heights based on slope and aspect of sites. Trees 2014, 28, 733–744. [Google Scholar]
- Eshetu, Y.; Mike, S.; Mesele, N.; Fantaw, Y. Influence of topographic aspect on floristic diversity, structure and treeline of afromontane cloud forests in the Bale Mountains, Ethiopia. J. For. Res. 2015, 26, 919–931. [Google Scholar]
- Koichi, T.; Satomi, M. Morphological variations of the Solidago virgaurea L. complex along an elevational gradient on Mt Norikura, central Japan. Plant Species Biol. 2017, 32, 238–246. [Google Scholar]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Tshering, D.; Inakwu, O.A.O.; Damien, J.F. Vertical distribution of soil organic carbon density in relation to land use/cover, altitude and slope aspect in the eastern Himalayas. Land 2014, 3, 1232–1250. [Google Scholar]
- Ou, Z.Y.; Cao, J.Z.; Shen, W.H.; Tan, Y.B.; He, Q.F.; Peng, Y.H. Understory flora in relation to canopy structure, soil nutrients, and gap light regime: A case study in southern China. Pol. J. Environ. Stud. 2015, 24, 2559–2568. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Hedo, J.; Cerdá, A.; Candel-Pérez, D.; Viñegla, B. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) Forest. Sci. Total Environ. 2016, 562, 145–154. [Google Scholar] [CrossRef] [PubMed]
Aspect | Shady | Semi-Shady | Sunny | Semi-Sunny | ||
---|---|---|---|---|---|---|
Sample quantity | 7 | 11 | 6 | 10 | ||
Slope/° | ≤15 | 16–25 | 26–35 | ≥36 | ||
Sample quantity | 2 | 15 | 15 | 2 | ||
Altitude/m | 900–1000 | 1000–1100 | 1100–1150 | 1150–1200 | 1200–1300 | >1300 |
Sample quantity | 2 | 6 | 15 | 8 | 3 | 0 |
Stands and Soil Characteristics | Maximum | Minimum | Average |
---|---|---|---|
Slope (°) | 45 | 15 | 26.50 |
Altitude (m) | 1220 | 960 | 1133.53 |
DBH (cm) | 18.54 | 6.37 | 10.85 |
Tree height (m) | 13.4 | 3.0 | 8.2 |
Crown area (m2) | 16.74 | 2.80 | 8.12 |
Canopy density | 0.88 | 0.38 | 0.64 |
Stand density (trees∙hectare−1) | 4400 | 500 | 1679 |
LAI | 4.50 | 0.88 | 2.06 |
Soil moisture content (%) | 40.03 | 5.66 | 13.71 |
WHC (%) | 122.88 | 25.54 | 50.41 |
SOM (g∙kg−1) | 122.55 | 1.31 | 16.08 |
TN (g∙kg−1) | 4.65 | 0.01 | 0.69 |
TP (g∙kg−1) | 7.60 | 0.03 | 0.66 |
NH3-N (mg∙kg−1) | 66.84 | 2.79 | 20.99 |
NO3-N (mg∙kg−1) | 88.40 | 0.12 | 10.27 |
AP (mg∙kg−1) | 117.64 | 0.16 | 36.00 |
Index Name | Evaluation Criterion | Initial Model | Modified Model |
---|---|---|---|
The chi-square () | The smaller the better. | 414.592 | 247.554 |
The ratio of chi-square and freedom () | 1~3. When the ratio is less than 1, the model is over adapted; when the ratio is between 1 and 3, the model is well adapted; when the ratio is greater than 3, the model is poorly fitted. | 4.105 | 2.782 |
Significant probability (p) | >0.05 | 0.000 | 0.078 |
Normative fit index (NFI) | 0~1. A value greater than 0.7 is acceptable, the closer to 1 the better. | 0.421 | 0.754 |
Incremental fit index (IFI) | 0~1. A value greater than 0.7 is acceptable, the closer to 1 the better. | 0.490 | 0.747 |
Comparative fit index (CFI) | 0~1. A value greater than 0.7 is acceptable, the closer to 1 the better. | 0.474 | 0.734 |
The root meant square error of approximation (RMSEA) | <0.05. The smaller the better. | 0.152 | 0.045 |
Akaike information criterion (AIC) | The smaller the better. | 516.592 | 373.554 |
Bayes criterion (BCC) | The smaller the better. | 531.287 | 391.707 |
Effect Type | Influences | ||
---|---|---|---|
Topography | Stand Structure | ||
Standardized total impact | Stand structure | 0.487 | |
Soil characteristics | 1.303 | −0.585 | |
Standardized direct impact | Stand structure | 0.487 | |
Soil characteristics | 1.589 | −0.585 | |
Standardized indirect impact | Stand structure | ||
Soil characteristics | −0.285 |
Observed Variables | Influences | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Standardized Total Impact | Standardized Direct Impact | Standardized Indirect Impact | ||||||||
Topography | Stand Structure | Soil Characteristics | Topography | Stand Structure | Soil Characteristics | Topography | Stand Structure | Soil Characteristics | ||
Slope | 0.342 | 0.342 | ||||||||
Altitude | −0.317 | −0.317 | ||||||||
DBH | 0.686 | 1.407 | 1.407 | 0.686 | ||||||
Tree height | 0.207 | 0.424 | 0.424 | 0.207 | ||||||
Tree crown area | 0.149 | 0.305 | 0.305 | 0.149 | ||||||
Canopy density | 0.114 | 0.234 | 0.234 | 0.114 | ||||||
Stand density | −0.119 | −0.243 | −0.243 | −0.119 | ||||||
LAI | −0.034 | −0.070 | −0.070 | −0.034 | ||||||
Soil moisture content | 1.117 | −0.502 | 0.857 | 0.857 | 1.117 | −0.502 | ||||
WHC | 0.546 | −0.245 | 0.419 | 0.419 | 0.546 | −0.245 | ||||
SOM | 0.732 | −0.329 | 0.561 | 0.561 | 0.732 | −0.329 | ||||
TN | 0.306 | −0.138 | 0.235 | 0.235 | 0.306 | −0.138 | ||||
TP | 0.052 | −0.023 | 0.040 | 0.040 | 0.052 | −0.023 | ||||
NH3-N | 0.547 | −0.245 | 0.419 | 0.419 | 0.547 | −0.245 | ||||
NO3-N | −0.088 | 0.040 | −0.068 | −0.068 | −0.088 | 0.040 | ||||
AP | 0.043 | −0.019 | 0.033 | 0.033 | 0.043 | −0.019 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Bi, H.; Liang, W.; Hou, G.; Kong, L.; Zhou, Q. Relationship between Soil Characteristics and Stand Structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. Mixed Plantations in the Caijiachuan Watershed: An Application of Structural Equation Modeling. Forests 2018, 9, 124. https://doi.org/10.3390/f9030124
Wei X, Bi H, Liang W, Hou G, Kong L, Zhou Q. Relationship between Soil Characteristics and Stand Structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. Mixed Plantations in the Caijiachuan Watershed: An Application of Structural Equation Modeling. Forests. 2018; 9(3):124. https://doi.org/10.3390/f9030124
Chicago/Turabian StyleWei, Xi, Huaxing Bi, Wenjun Liang, Guirong Hou, Lingxiao Kong, and Qiaozhi Zhou. 2018. "Relationship between Soil Characteristics and Stand Structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. Mixed Plantations in the Caijiachuan Watershed: An Application of Structural Equation Modeling" Forests 9, no. 3: 124. https://doi.org/10.3390/f9030124
APA StyleWei, X., Bi, H., Liang, W., Hou, G., Kong, L., & Zhou, Q. (2018). Relationship between Soil Characteristics and Stand Structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. Mixed Plantations in the Caijiachuan Watershed: An Application of Structural Equation Modeling. Forests, 9(3), 124. https://doi.org/10.3390/f9030124