Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Active Fire Hotspots
2.3. Fire Hotspot Density Index (FHD) Calculation
2.4. Fuel Dryness Index (FDI) Inputs
2.5. Fuel Dryness Index (FDI) Calculation
2.6. Threshold FDIp Values by Vegetation Type and Region
2.7. Accumulated Fuel Dryness Index (AcFDI)
2.8. Models for the Prediction of Fire Hotspot Density (FHD)
3. Results
3.1. Observed Fuel Dryness Index for Vegetation Types and Regions
3.2. Threshold FDIp Values by Vegetation Type and Region
3.3. Predicting Fire Hotspot Density (FHD) from AcFDI by Vegetation Type and Region
4. Discussion
4.1. Observed Fuel Dryness Index (FDI) for Vegetation Type and Regions
4.2. Threshold FDI Values by Vegetation Type and Region
4.3. Predicting Fire Hotspot Density (FHD) by Vegetation Type and Region
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Preisler, H.K.; Westerling, A.L.; Gebert, K.M.; Munoz-Arriola, F.; Holmes, T.P. Spatially explicit forecasts of large wildland fire probability and suppression costs for California. Int. J. Wildland Fire 2011, 20, 508–517. [Google Scholar] [CrossRef]
- Mavsar, R.; González-Cabán, A.; Varela, E. The State of Development of Fire Management Decision Support Systems in America and Europe. For. Policy Econ. 2013, 29, 45–55. [Google Scholar] [CrossRef]
- Rodríguez y Silva, F.; Molina Martínez, J.R.; González-Cabán, A. A Methodology for Determining Operational Priorities for Prevention and Suppression of Wildland Fires. Int. J. Wildland Fire 2014, 243, 544–554. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A. Forest fires and climate change in the 21st century. Mitig. Adapt. Strateg. Glob. Chang. 2006, 114, 847–859. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 153, 549–560. [Google Scholar] [CrossRef]
- Westerling, A.L.R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S. The Canadian Wildland Fire Information System. In Proceedings of the 9th Annual Conference on Geographic Information Systems in Forestry, Environment and Natural Resources Management, Vancouver, BC, Canada, 27–30 March1995; GIS World Inc.: Fort Collins, CO, USA; pp. 639–646. [Google Scholar]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System—1978; Gen. Tech. Rep. INT-39; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1977; p. 63.
- Burgan, R.E. 1988 Revisions to the 1978 National Fire-Danger Rating System; Res. Pap. SE-273; Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1988; p. 39.
- Burgan, R.E.; Andrews, P.L.; Bradshaw, L.S.; Chase, C.H.; Hartford, R.A.; Latham, D.J. WFAS: Wildland fire assessment system. Fire Manag. Notes 1997, 572, 14–17. [Google Scholar]
- Camia, A.; Barbosa, P.; Amatulli, G.; San-Miguel-Ayanz, J. Fire danger rating in the European Forest Fire Information System EFFIS: Current developments. For. Ecol. Manag. 2006, 234, S20. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Roberto Boca, R.; Sedano, F.; Pieter Kempeneers, P.; et al. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts; European Commission, Joint Research Centre: Rome, Italy, 2012. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L.; Logan, K.A. Climate change and people-caused forest fire occurrence in Ontario. Clim. Chang. 2003, 603, 275–295. [Google Scholar] [CrossRef]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 193, 253–271. [Google Scholar] [CrossRef]
- Woolford, D.G.; Cao, J.; Dean, C.B.; Martell, D.L. Characterizing temporal changes in forest fire ignitions: Looking for climate change signals in a region of the Canadian boreal forest. Environmetrics 2010, 21, 789–800. [Google Scholar] [CrossRef]
- Woolford, D.G.; Dean, C.B.; Martell, D.L.; Cao, J.; Wotton, B.M. Lightning-caused forest fire risk in Northwestern Ontario, Canada is increasing and associated with anomalies in fire-weather. Environmetrics 2014, 25, 406–416. [Google Scholar] [CrossRef]
- Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–226. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Trouet, V.; Taylor, A.H.; Carleton, A.M.; Skinner, C.N. Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theor. Appl. Climatol. 2009, 95, 349–360. [Google Scholar] [CrossRef]
- Martell, D.L.; Bevilacqua, E.B.J. Modelling seasonal variation in daily people-caused forest fire occurrence. Can. J. For. Res. 1989, 19, 1555–1563. [Google Scholar] [CrossRef]
- Vega-García, C.; Woodard, T.; Adamowicz, W.L.; Lee, B. A logit model for predicting the daily occurrence of human caused forest fires. Int. J. Wildland Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Preisler, H.K.; Brillinger, D.R.; Burgan, R.E.; Benoit, J.W. Probability based models for estimating wildfire risk. Int. J. Wildland Fire 2004, 13, 133–142. [Google Scholar] [CrossRef]
- Preisler, H.K.; Westerling, A.L. Statistical model for forecasting monthly large wildfire events in western United States. J. Appl. Meteorol. Clim. 2007, 46, 1020–1030. [Google Scholar] [CrossRef]
- Riley, K.L.; Abatzoglou, J.T.; Grenfell, I.C.; Klene, A.E.; Heinsch, F.A. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008, the role of temporal scale. Int. J. Wildland Fire 2013, 22, 894–909. [Google Scholar] [CrossRef]
- Urbieta, I.R.; Zavala, G.; Bedia, J.; Gutiérrez, J.M.; San Miguel-Ayanz, J.; Camia, A.; Keeley, J.E.; Moreno, J.M. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environ. Res. Lett. 2015, 10, 114013. [Google Scholar] [CrossRef]
- Riley, K.; Stonesifer, C.; Calkin, D.; Preisler, H.K. Assessing predictive services’ 7-day fire potential outlook. In Proceedings of the Large Wildland Fires Conference, Missoula, MT, USA, 19–23 May 2014; Keane, R.E., Jolly, M., Parsons, R., Riley, K., Eds.; Proc. RMRS-P-73. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2015; pp. 188–195. [Google Scholar]
- Burgan, R.E.; Klaver, R.W.; Klaver, J.M. Fuel Models and Fire Potential from Satellite and Surface Observations. Int. J. Wildland Fire 1998, 83, 159–170. [Google Scholar] [CrossRef]
- Sebastián-López, A.; Burgan, R.E.; San Miguel-Ayanz, J. Assessment of Fire Potential in Southern Europe. In Forest Fire Research & Wildland Fire Safety; Millpress Science Publishers: Rotterdam, The Netherlands, 2002. [Google Scholar]
- Sebastián-Lopez, A.; San-Miguel-Ayanz, J.; Burgan, R.E. Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. Int. J. Remote Sens. 2002, 23, 2713–2719. [Google Scholar] [CrossRef]
- Sebastián López, A.; Burgan, R.E.; Calle, A.; Palacios-Orueta, A. Calibration of the fire potential index in different seasons and bioclimatic regions of southern Europe. In Proceedings of the 4th Wildland Fire International Conference, Sevilla, Spain, 14–17 May 2007. [Google Scholar]
- Yunhao, C.; Li, J.; Guangxiong, P. Forest fire risk assessment combining remote sensing and meteorological information. N. Z. J. Agric. Res. 2007, 50, 1037–1044. [Google Scholar] [CrossRef]
- Schneider, P.; Roberts, D.A.; Kyriakidis, P.C. A VARI-based relative greenness from MODIS data for computing the fire potential index. Remote Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, J.M.; Klaver, R.W. Forecasting Distributions of Large Federal-Lands Fires Utilizing Satellite And Gridded Weather Information. Int. J. Wildland Fire 2009, 18, 508–516. [Google Scholar] [CrossRef]
- Preisler, H.K.; Eidenshink, J.; Howard, S.; Burgan, R.E. Forecasting Distribution of Numbers of Large Fires. In Proceedings of the Large Wildland Fires Conference, Missoula, MT, USA, 19–23 May 2014; Proc. RMRS-P-73. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA; pp. 181–187. [Google Scholar]
- Burgan, R.E.; Hartford, R.A. Monitoring Vegetation Greenness with Satellite Data; General Technical Report INT-GTR-297; USDA Forest Service, Intermountain Research Station: Ogden, UT, USA, 1993.
- Burgan, R.E.; Hartford, R.A.; Eidenshink, J.C. Using NDVI to Assess Departure from Average Greenness and Its Relation to Fire Business; Gen. Tech. Rep. INT-GTR-333; Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1996; p. 8.
- Illera, P.; Fernandez, A.; Calle, A.; Casanova, J.L. Temporal evolution of the NDVI as an indicator of forest fire danger. Int. J. Remote Sens. 1996, 17, 1093–1105. [Google Scholar] [CrossRef]
- Chuvieco, E.; Gonzalez, I.; Verdu, F.; Aguado, I.; Yebra, M. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem. Int. J. Wildland Fire 2009, 18, 430–441. [Google Scholar] [CrossRef]
- Leblon, B.; Bourgeau-Chavez, L.; San-Miguel-Ayanz, J. Use of Remote Sensing in Wildfire Management, Sustainable Development—Authoritative and Leading Edge Content for Environmental Management; Curkovic, S., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Yebra, D.P.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment, Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Fosberg, M.A. Moisture Content Calculations for the 100-Hour Timelag Fuel in Fire Danger Rating; Research Note RM-199; USDA Forest Service, Rocky Mountain Forest and Range Experimental Station: Fort Collins, CO, USA, 1971.
- Fosberg, M.A.; Deeming, J.E. Derivation of the 1- and 10-Hour Timelag Fuel Moisture Calculations for Fire-Danger Rating; Research Note RM-207; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1971.
- Sudiana, D.; Kuze, H.; Takeuchi, N.; Burgan, R.E. Assessing forest fire potential in Kalimantan Island, Indonesia, using satellite and surface weather data. Int. J. Wildland Fire 2003, 12, 175–184. [Google Scholar] [CrossRef]
- Sebastián-López, A.; San-Miguel-Ayanz, J.; Libertà, G. An integrated forest fire risk index for Europe. In Remote Sensing in the 21st Century: A Decade of Trans-European Remote Sensing Cooperation; EARSeL: Dresden, Germany, 2000. [Google Scholar]
- Huesca, M.; Palacios-Orueta, A.; Montes, F.; Sebastián-López, A.; Escribano, P. Forest Fire Potential Index for Navarra Autonomic Community Spain. In Proceedings of the 4th Wildland Fire International Conference, Sevilla, Spain, 14–17 May 2007. [Google Scholar]
- Huesca, M.; Litago, J.; Palacios-Orueta, A.; Montes, F.; Sebastián-López, A.; Escribano, P. Assessment of forest fire seasonality using MODIS fire potential: A timeseries approach. Agric. Forest Meteorol. 2009, 149, 1946–1955. [Google Scholar] [CrossRef]
- Huesca, M.; Litago, J.; Merino-de-Miguel, S.; Cicuendez-López-Ocaña, V.; Palacios-Orueta, A. Modeling and forecasting MODIS-based Fire Potential Index on a pixel basis using time series models. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 363–376. [Google Scholar] [CrossRef]
- Manzo-Delgado, L.; Aguirre-Gómez, R.; Álvarez, R. Multitemporal analysis of land surface temperature using NOAA-AVHRR: Preliminary relationships between climatic anomalies and forest fires. Int. J. Remote Sens. 2004, 25, 4417–4423. [Google Scholar] [CrossRef]
- Manzo-Delgado, L.; Sánchez-Colón, S.; Álvarez, R. Assessment of seasonal forest fire risk using NOAA-AVHRR: A case study in central Mexico. Int. J. Remote Sens. 2009, 30, 4991–5013. [Google Scholar] [CrossRef]
- Avila-Flores, D.; Pompa-García, M.; Antonio-Nemiga, X.; Rodríguez-Trejo, D.A.; Vargas-Pérez, E.; Santillan-Pérez, J. Driving factors for forest fire occurrence in Durango State of México: A geospatial perspective. Chin. Geogr. Sci. 2010, 20, 491–497. [Google Scholar] [CrossRef]
- Pérez-Verdín, G.; Márquez-Linares, M.A.; Cortés-Ortiz, A.; Salmerón-Macías, M. Análisis espacio-temporal de la ocurrencia de incendios forestales en Durango, México. Spatio-temporal analysis of forest fire occurrence in Durango, Mexico. Madera Y Bosques 2013, 19, 37–58. [Google Scholar] [CrossRef]
- Antonio, X.; Ellis, E.A. Forest Fires and Climate Correlation in México State: A Report Based on MODIS. Adv. Remote Sens. 2015, 4, 280–286. [Google Scholar] [CrossRef]
- Pompa-García, M.; Camarero, J.J.; Rodríguez-Trejo, D.A.; Vega-Nieva, D.J. Drought and spatiotemporal variability of forest fires across Mexico. Chin. Geogr. Sci. 2017. [Google Scholar] [CrossRef]
- Sepúlveda, B.J.; Zúñiga, C.W.; Olguín, E.M.; Gomero, P.A. Implementación De Un Sistema De Información Geográfica Para La Prevención De Incendios forestales En Baja California, Folleto Científico No. 1; INIFAP, SAGAR: Baja California, Mexico, 1999. [Google Scholar]
- Sepúlveda, B.J.; Meza, R.; Zúñiga, C.W.; Solìs, G.; Olguín, E.M. SIG Para Determinar Riesgo De Incendios Forestales En El Noroeste De Mexico; INIFAP, SAGAR: Baja California, Mexico, 2001. [Google Scholar]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Cruz-Lopez, M.I.; Lopez-Saldaña, G.; Ressl, R.; Colditz, R. Sistema de alerta temprana para incendios forestales en México. In Mas, JF. Coord., Aplicaciones Del Sensor MODIS Para El Monitoreo Del Territorio; SEMARNAT, INE CIGA-UNAM: Mexico City, Mexico, 2011. [Google Scholar]
- Cruz-Lopez, M.I. The National System for Satellite based real-time wildfire monitoring. In Latin America Geospatial Forum; INEGI: México City, Mexico, 24 September 2014. [Google Scholar]
- Vega-Nieva, D.; Nava-Miranda, M.G.; Calleros-Flores, E.; Lopez-Serrano, P.M.; Briseño-Reyes, J.; Lopez-Sanchez, C.A.; Flores-Medina, F.; Corral-Rivas, J.J.; Gonzalez-Caban, A.; Alvarado-Celestino, E.; et al. Developing a Forest Fire Danger System for Mexico. In Proceedings of the V International Simposium on Fire Economics, Planning and Policy, Wildfires and Ecosystem Services, Tegucigalpa, Honduras, 14–18 November 2016. [Google Scholar]
- Vega-Nieva, D.J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Briseño-Reyes, J.; López-Sánchez, C.A.; Corral-Rivas, J.J.; Montiel-Antuna, E.; Alvarado-Celestino, E.; González-Cabán, A.; et al. Temporal patterns of fire density by vegetation type and region in Mexico and its temporal relationships with a monthly satellite fuel greenness index. Fire Ecol. under review.
- Rodríguez-Trejo, D.A. Fire regimes, fire ecology and fire management in México. AMBIO A J. Hum. Environ. 2008, 377, 548–556. [Google Scholar] [CrossRef]
- Yocom, L.L.; Fulè, P.Z.; Brown, P.M.; Cerano-Paredes, J.; Villanueva, J.; Cornejo Oviedo, E.; Falk, D.A. El Nino–Southern Oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology 2010, 91, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Yocom, L.L.; Fulè, P.Z. Human and climate influences on frequent fire in a high-elevation tropical forest. J. Appl. Ecol. 2012, 49, 1356–1364. [Google Scholar] [CrossRef]
- Jardel, E.J.; Alvarado, E.; Morfín-Ríos, J.E.; Castillo-Navarro, F.; Flores-Garnica, J.G. Regímenes de incendios en ecosistemas forestales de México. In Impacto Ambiental De Incendios Forestales; Flores-Garnica, J.G., Ed.; Mundi-Prensa, INIFAP y Colegio de Postgraduados: México City, Mexico, 2009. [Google Scholar]
- Rodríguez-Trejo, D.A.; Fulé, P.Z. Fire ecology of Mexican pines and fire management proposal. Int. J. Wildland Fire 2003, 12, 23–37. [Google Scholar] [CrossRef]
- Cruz-Lopez, M.I. Sistema de alerta temprana, monitoreo e impacto de los incendios forestales en México y Centroamérica. In Proceedings of the 4th Wildland Fire International Conference, Sevilla, Spain, 14–17 May 2007; Available online: http://www.fire.uni-freiburg.de/sevilla-2007/contributions/doc/REGIONALES/A_IBEROAMERICA/Cruz_MEJICO.pdf (accessed on 20 March 2017).
- He, L.; Li, Z. Enhancement of a fire-detection algorithm by eliminating solar contamination effects and atmospheric path radiance: Application to MODIS data. Int. J. Remote Sens. 2011, 32, 6273–6293. [Google Scholar] [CrossRef]
- Cervera-Taboada, A. Implementación de un modelo para estimar la humedad en el combustible muerto, basado en datos de sensores remotos. In Reporte De Investigación Grado De Licenciatura; UNAM: México City, Mexico, 2009. [Google Scholar]
- De Badts, E.; López, G.; Wickel, B.; Cruz, I.; Jiménez, R. A fire risk propagation map based on NDVI anomalies. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest FIRE Management: FIRE Effects Assessment, Universidad de Zaragoza, Zaragoza, Spain, 16–18 June 2005. [Google Scholar]
- Setzer, A.W.; Sismanoglu, R.A. Risco De Fogo: Metodologia Do Cálculo—Descrição Sucinta Da Versão 9; INPE Report; INPE: São José dos Campos, Brazil, 2012. [Google Scholar]
- Koenker, R.; Park, B.J. An Interior Point Algorithm for Nonlinear Quantile Regression. J. Econom. 1994, 71, 265–283. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 20 March 2017).
- Ryan, T.P. Modern Regression Methods. In Wiley Series in Probability and Statistics; John Wile and Sons: New York, NY, USA, 1997; 515p. [Google Scholar]
- Roads, J.; Fujioka, F.; Chen, S.; Burgan, R. Seasonal Fire Danger Forecasts for the USA. Int. J. Wildland Fire 2005, 19, 399–414. [Google Scholar] [CrossRef]
- Roads, J.; Tripp, P.; Juang, H.; Wang, J.; Fujioka, F.; Chen, S. Ncep-Ecpc Monthly To Seasonal Us Fire Danger Forecasts. Int. J. Wildland Fire 2010, 19, 399–414. [Google Scholar] [CrossRef]
- Chen, S.C.; Preisler, H.K.; Fujioka, F.; Benoit, J.W.; Roads, J.O. Seasonal Predictions for Wildland Fire Severity. In Proceedings of the Third International Symposium on Fire Economics, Planning, and Policy: Common Approaches and Problems, Carolina, Puerto Rico, 26–29 April 2009. [Google Scholar]
- Preisler, H.K.; Chen, S.C.; Fujioka, F.; Benoit, J.W.; Westerling, A.L. Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices. Int. J. Wildland Fire 2008, 17, 305–316. [Google Scholar] [CrossRef]
- Díaz-Avalos, C.; Peterson, D.L.; Alvarado, E.; Ferguson, S.A.; Besag, J.E. Space–time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Can. J. For. Res. 2001, 31, 1579–1593. [Google Scholar]
- Botequim, B.; Garcia-Gonzalo, J.; Marques, S.; Ricardo, A.; Borges, J.G.; Tomé, M.; Oliveira, M.M. Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest 2013, 6, 217–227. [Google Scholar] [CrossRef]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of fire selectivity in relation to land cover and topography: A comparison between Southern European countries. Int. J. Wildland Fire 2013, 23, 620–630. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire risk estimation in the Mediterranean area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I. The new VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Vilar, L.; Camia, A.; San Miguel-Ayanz, J. A comparison of remote sensing products and forest fire statistics for improving fire information in Mediterranean Europe. Eur. J. Remote Sens. 2015, 48, 345–364. [Google Scholar] [CrossRef]
- Vasconcelos, M.J.P.; Silva, S.; Tome, M.; Alvim, M.; Pereira, J.M.C. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogramm. Eng. Rem. Sens. 2001, 67, 73–83. [Google Scholar]
- Sebastián-López, A.; Salvador-Civil, R.; Gonzalo-Jimenez, J.; San-Miguel Ayanz, J. Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. Eur. J. For. Res. 2008, 127, 149–163. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.C.; San Miguel-Ayanz, J.; Lourenço, L. Exploring the spatial patterns of fire density in Southern Europe using geographically weighted regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
Veg_Reg | FDI95 | FDI90 | FDI85 |
---|---|---|---|
FOR_NW | 59 | 66 | 70 |
FOR_NE | 52 | 55 | 59 |
FOR_C | 47 | 53 | 57 |
FOR_S | 38 | 42 | 45 |
FOR_NC | 59 | 66 | 70 |
DTROPF_C | 46 | 53 | 57 |
DTROPF_S | 48 | 52 | 54 |
DTROPF_NE | 46 | 51 | 53 |
DTROPF_NW | 59 | 65 | 68 |
SWTROPF_S | 46 | 50 | 53 |
SDTROPF_S | 48 | 51 | 53 |
WTROPF_S | 41 | 45 | 47 |
WET_S | 43 | 46 | 48 |
AGR_C | 44 | 51 | 55 |
AGR_NW | 57 | 64 | 68 |
AGR_NE | 52 | 54 | 58 |
AGR_S | 42 | 47 | 50 |
NPAS_C | 50 | 56 | 60 |
Veg_Reg | Perc | Coefficients | Goodness of Fit | ||||
---|---|---|---|---|---|---|---|
a | b | c | R2 | RMSE | Bias | ||
FOR_NW | 80 | 13.7 | 3.14 | 0.76 | 0.707 | 43.4 | −10.6 |
FOR_NE | 90 | 22.8 | 2.20 | 0.80 | 0.619 | 39.6 | −8.6 |
FOR_C | 80 | 11.5 | 1.98 | 0.83 | 0.703 | 41.6 | −9.5 |
FOR_S | 70 | 1.8 | 4.70 | 0.72 | 0.575 | 57.4 | −5.9 |
FOR_NC | 95 | 5.6 | 3.49 | 0.61 | 0.463 | 21.4 | −6.9 |
DTROPF_C | 80 | 9.6 | 1.98 | 0.84 | 0.725 | 40.3 | −12.9 |
DTROPF_NW | 85 | 41.9 | 0.88 | 0.70 | 0.523 | 29.1 | −11.1 |
DTROPF_NE | 90 | 35.7 | 0.95 | 0.59 | 0.461 | 21.7 | −5.1 |
DTROPF_S | 80 | 78.6 | 0.59 | 0.75 | 0.601 | 60.3 | −13.5 |
WTROPF_S | 80 | 38.6 | 1.95 | 0.74 | 0.587 | 31.9 | −8.2 |
SWTROPF_S | 65 | 100.8 | 1.35 | 0.70 | 0.625 | 62.1 | −7.92 |
SDTROPF_S | 75 | 129.4 | 0.77 | 0.71 | 0.496 | 81.4 | −7.5 |
WET_S | 70 | 16.9 | 2.49 | 0.67 | 0.511 | 48.1 | −8.69 |
AGR_C | 90 | 9.9 | 1.83 | 0.80 | 0.712 | 32.6 | −14.4 |
AGR_NW | 90 | 24.4 | 0.82 | 0.61 | 0.457 | 23.5 | −10.8 |
AGR_NE | 90 | 25.8 | 0.61 | 0.78 | 0.615 | 18.9 | −9.2 |
AGR_S | 65 | 20.2 | 1.59 | 0.83 | 0.708 | 42.2 | −8.7 |
NPAS_C | 80 | 11.1 | 1.29 | 0.84 | 0.727 | 24.1 | −7.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Nieva, D.J.; Briseño-Reyes, J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Corral-Rivas, J.J.; Montiel-Antuna, E.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; et al. Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico. Forests 2018, 9, 190. https://doi.org/10.3390/f9040190
Vega-Nieva DJ, Briseño-Reyes J, Nava-Miranda MG, Calleros-Flores E, López-Serrano PM, Corral-Rivas JJ, Montiel-Antuna E, Cruz-López MI, Cuahutle M, Ressl R, et al. Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico. Forests. 2018; 9(4):190. https://doi.org/10.3390/f9040190
Chicago/Turabian StyleVega-Nieva, D. J., J. Briseño-Reyes, M. G. Nava-Miranda, E. Calleros-Flores, P. M. López-Serrano, J. J. Corral-Rivas, E. Montiel-Antuna, M. I. Cruz-López, M. Cuahutle, R. Ressl, and et al. 2018. "Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico" Forests 9, no. 4: 190. https://doi.org/10.3390/f9040190
APA StyleVega-Nieva, D. J., Briseño-Reyes, J., Nava-Miranda, M. G., Calleros-Flores, E., López-Serrano, P. M., Corral-Rivas, J. J., Montiel-Antuna, E., Cruz-López, M. I., Cuahutle, M., Ressl, R., Alvarado-Celestino, E., González-Cabán, A., Jiménez, E., Álvarez-González, J. G., Ruiz-González, A. D., Burgan, R. E., & Preisler, H. K. (2018). Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico. Forests, 9(4), 190. https://doi.org/10.3390/f9040190