Effects of Vegetation Management on Wood Properties and Plant Water Relations of Four Conifer Species in the Pacific Northwest of the USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Carbon Isotope Analysis
2.3. Densitometry Analysis
2.4. Statistical Analysis
3. Results
3.1. Intrinsic Water Use Efficiency (iWUE)
3.2. Ring Wood Specific Gravity and Latewood Percent
3.3. Annual Ring Growth
3.4. Whole-Tree Wood Properties and Ring Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franklin, J.E.; Spies, T.A.; Swanson, F.J. Setting the stage: Vegetation ecology and dynamics. In People, Forests, and Change: Lessons from the Pacific Northwest; Olson, D., Van Horne, B., Eds.; Island Press: Washington, DC, USA, 2017; pp. 16–32. [Google Scholar]
- Farr, W.; Harris, A. Site index of Sitka spruce along the Pacific coast related to latitude and temperatures. For. Sci. 1979, 25, 145–153. [Google Scholar]
- Jensen, E.C. Trees to Know in Oregon; Oregon State University Extension Service: Corvallis, OR, USA, 2010. [Google Scholar]
- Chen, F.-H. Effects of Weed Control on Vegetation Dynamics in Pacific Northwest Conifer Plantations; Oregon State University: Corvallis, OR, USA, 2004. [Google Scholar]
- Ammer, C.; Balandier, P.; Bentsen, N.S.; Coll, L.; Löf, M. Forest vegetation management under debate: An introduction. Eur. J. For. Res. 2011, 130, 1–5. [Google Scholar] [CrossRef]
- Ketchum, J.S.; Newton, M.; Rose, R. Vegetation management: One of the most imporatnt tools in foresty. West. For. 1999, 44, 1, 4, 8. [Google Scholar]
- Maguire, D.A.; Mainwaring, D.B.; Rose, R.; Garber, S.M.; Dinger, E.J. Response of coastal Douglas-fir and competing vegetation to repeated and delayed weed control treatments during early plantation development. Can. J. For. Res. 2009, 39, 1208–1219. [Google Scholar] [CrossRef]
- Rose, R.; Rosner, L.S.; Ketchum, J.S. Twelfth-year response of Douglas-fir to area of weed control and herbaceous versus woody weed control treatments. Can. J. For. Res. 2006, 36, 2464–2473. [Google Scholar] [CrossRef]
- Boyd, R.S.; Freeman, J.D.; Miller, J.H.; Edwards, M.B. Forest herbicide influences on floristic diversity seven years after broadcast pine release treatments in central Georgia, USA. New For. 1995, 10, 17–37. [Google Scholar]
- Boateng, J.O.; Haessler, S.; Bedford, L. Boreal plant community diversity 10 years after glyphosphate treatment. West. J. Appl. For. 2000, 15, 15–26. [Google Scholar]
- Dinger, E.J.; Rose, R. Initial fall-spring vegetation management regimes improve moisture conditions and maximise third-year Douglas-fir seedling growth in a Pacific Northwest plantation. J. For. Sci. 2010, 40, 199–209. [Google Scholar]
- Goracke, H.S.R. Temporal Effect of Vegetation Management on Growth and Wood Quality of Confiers in a Western Oregon Plantation; Oregon State University: Corvallis, OR, USA, 2010. [Google Scholar]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Pallardy, S.G. Chapter 5—Photosynthesis. In Physiology of Woody Plants; Academic Press: San Diego, CA, USA, 2008; pp. 107–167. [Google Scholar]
- Domec, J.-C.; Gartner, B.L. How do water transport and water storage differ in coniferous earlywood and latewood? J. Exp. Bot. 2002, 53, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2011; Volume 26, ISBN 0816526842. [Google Scholar]
- Warren, W.G. The contribution of earlywood and latewood specific gravities to overall wood specific gravity. Wood Fiber Sci. 1979, 11, 127–135. [Google Scholar]
- Strause, D.A. Specific Gravity and per Cent Summerwood Variation in a Young Douglas-Fir Clone and Use of Uniformity Trial in Predicting Specific Gravity from Increment Cores. Master’s Thesis, Oregon State College, Corvallis, OR, USA, 1959. [Google Scholar]
- Gonzalez-Benecke, C.A.; Martin, T.A.; Clark, A.; Peter, G.F. Water availability and genetic effects on wood properties of loblolly pine (Pinus taeda). Can. J. For. Res. 2010, 40, 2265–2277. [Google Scholar] [CrossRef]
- Barnett, J.; Jeronimidis, G. (Eds.) Wood Quality and its Biological Basis; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0849328195. [Google Scholar]
- Flamenco, H.N.; Gonzalez-Benecke, C.A.; Wightman, M.G. Long-term effects of vegetation management on biomass stock of four coniferous species in the Pacific Northwest United States. For. Ecol. Manag. 2018, in press. [Google Scholar]
- Brienen, R.J.W.; Wanek, W.; Hietz, P. Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees 2010, 25, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Keeling, R.F.; Piper, S.C.; Bollenbacher, A.F.; Walker, S.J. Monthly Atmospheric 13C/12C Isotopic Ratios for 11 SIO Stations; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2010.
- Tans, P. Trends in Atmospheric Carbon Dioxide. Available online: www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 14 August 2017).
- McCarroll, D.; Loader, N.J. Stable isotopes in tree rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef] [Green Version]
- Jordan, L.; Clark, A.; Schimleck, L.R.; Hall, D.B.; Daniels, R.F. Regional variation in wood specific gravity of planted loblolly pine in the United States. Can. J. For. Res. 2008, 38, 698–710. [Google Scholar] [CrossRef]
- Jordan, L.; Schimleck, L.R.; Clark, A.; Hall, D.B.; Daniels, R.F. Estimating optimum sampling size to determine weighted core specific gravity of planted loblolly pine. Can. J. For. Res. 2007, 37, 2242–2249. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought. Res. Pap. No. 45; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965.
- Abatzoglou, J.T.; McEvoy, D.J.; Redmond, K.T. The West Wide Drought Tracker: Drought Monitoring at Fine Spatial Scales. Bull. Am. Meteorol. Soc. 2017, 98, 1815–1820. [Google Scholar] [CrossRef]
- Orhan, H.; Eyduran, E.; Akbaş, Y. Defining the best covariance structure for sequential variation on live weights of anatolian merinos male lambs. J. Anim. Plant Sci. 2010, 20, 158–163. [Google Scholar]
- Nobel, P.S.; Nobel, P.S. Chapter 8—Leaves and Fluxes. In Physicochemical and Environmental Plant Physiology; Academic Press: Cambridge, MA, USA, 2009; pp. 364–437. ISBN 9780123741431. [Google Scholar]
- De Almeida Silva, M.; Jifon, J.L.; dos Santos, C.M.; Jadoski, C.J.; da Silva, J.A.G. Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Braz. Arch. Biol. Technol. 2013, 56, 735–748. [Google Scholar] [CrossRef]
- Dinger, E.J.; Rose, R. The integration of soil moisture, xylem water potential, and fall-spring herbicide treatments to achieve the maximum growth response in newly planted Douglas-fir seedlings. Can. J. For. Res. 2009, 39, 1401–1414. [Google Scholar] [CrossRef]
- Gonzalez-Benecke, C.A.; Dinger, E.J. Use of water stress integral to evaluate relationships between soil moisture, plant water stress and stand productivity in young Douglas-fir trees. New For. 2018, in press. [Google Scholar]
- Mcculloh, K.A.; Johnson, D.M.; Meinzer, F.C.; Woodruff, D.R. The dynamic pipeline: Hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant Cell Environ. 2014, 37, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Walters, J.; Soos, J. Shoot growth patterns of some British Columbia conifers. For. Sci. 1963, 9, 83–85. [Google Scholar]
- Miller, J.H.; Zutter, B.R.; Newbold, R.A.; Edwards, M.B.; Zedaker, S.M. Growth and yield relative to competition for loblolly pine plantations to midrotation—Southeastern United States regional study. South. J. Appl. For. 2003, 27, 237–252. [Google Scholar]
- Slesak, R.A.; Harrington, T.B.; Peter, D.H.; DeBruler, D.G.; Schoenholtz, S.H.; Strahm, B.D. Effects of intensive management practices on 10-year Douglas-fir growth, soil nutrient pools, and vegetation communities in the Pacific Northwest, USA. For. Ecol. Manag. 2016, 365, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.G.; Robinson, A.P. Critical period of interspecific competition for four northern conifers: 10-year growth response and associated vegetation dynamics. Can. J. For. Res. 2006, 36, 2474–2485. [Google Scholar] [CrossRef]
- Antony, F.; Schimleck, L.R.; Jordan, L.; Clark, A.; Daniels, R.F. Effect of early age woody and herbaceous competition control on wood properties of loblolly pine. Fuel Energy Abstr. 2011, 262, 1639–1647. [Google Scholar] [CrossRef]
- Watt, M.S.; Downes, G.M.; Whitehead, D.; Mason, E.G.; Richardson, B.; Grace, J.C.; Moore, J.R. Wood properties of juvenile Pinus radiata growing in the presence and absence of competing understory vegetation at a dryland site. Trees-Struct. Funct. 2005, 19, 580–586. [Google Scholar] [CrossRef]
- Zobel, B.; Sprague, J. Juvenile Wood in Trees; Timell, T.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 9783642721281. [Google Scholar]
- Jozsa, L.A.; Middleton, G.R. A Discussion of Wood Quality Attributes and Their Practical Implications; Forintek Canada Corporation: Vancouver, BC, Canada, 1994. [Google Scholar]
- Bassett, J.R. Diameter growth of loblolly pine trees as affected by soil-moisture availability. Res. Pap. 1964, 7, 9. [Google Scholar]
- Clark, A.; Borders, B.E.; Daniels, R.F. Impact of vegetation control and annual fertilization on properties of loblolly pine wood at age 12. For. Prod. J. 2004, 54, 90–96. [Google Scholar]
Site | Species | Treatment | TPHA (ha−1) | BA (m2 ha−1) | QMD (cm) | VOB (m3 ha−1) |
CF | DF | O | 696 | 12.8 | 15.9 | 73.9 |
T | 710 | 21.6 | 20.2 | 139.6 | ||
WRC | O | 351 | 4.2 | 12.5 | 18.6 | |
T | 935 | 14.4 | 15.9 | 64.9 | ||
CR | DF | O | 688 | 18.4 | 18.5 | 127.4 |
T | 696 | 23.6 | 20.8 | 169.7 | ||
WH | O | 868 | 13.7 | 18.4 | 44.1 | |
T | 1025 | 33.1 | 27.8 | 124.8 | ||
WRC | O | 798 | 4.7 | 10.6 | 19.8 | |
T | 967 | 17.9 | 20.6 | 83.2 | ||
GF | O | 927 | 11.1 | 16.7 | 29.8 | |
T | 997 | 31.8 | 27.7 | 97.5 |
Site | Species | T | P | T × P |
---|---|---|---|---|
CF | DF | 0.229 | <0.001 | 0.015 |
WRC | 0.089 | 0.428 | 0.552 | |
CR | DF | 0.209 | 0.240 | 0.356 |
WH | 0.152 | 0.008 | 0.865 | |
WRC | 0.402 | 0.527 | 0.114 | |
GF | 0.763 | 0.006 | 0.711 |
SGR | SGE | SGL | LW% | ||||||
---|---|---|---|---|---|---|---|---|---|
Site | Species | T | T × R | T | T × R | T | T × R | T | T × R |
CR | DF | 0.119 | 0.122 | 0.515 | 0.349 | 0.272 | 0.387 | 0.347 | 0.288 |
WH | 0.557 | 0.288 | 0.795 | 0.455 | 0.329 | 0.040 | 0.134 | 0.075 | |
WRC | 0.051 | 0.644 | 0.044 | 0.829 | 0.972 | 0.507 | 0.310 | 0.002 | |
GF | 0.677 | 0.470 | 0.965 | 0.994 | 0.121 | 0.978 | 0.894 | 0.001 | |
CF | DF | 0.378 | 0.698 | 0.229 | 0.104 | 0.034 | 0.586 | 0.856 | 0.866 |
WRC | 0.390 | 0.354 | 0.130 | 0.795 | 0.145 | 0.765 | 0.798 | 0.224 |
Ring Area | EW Area | LW Area | |||||
---|---|---|---|---|---|---|---|
Site | Species | T | T × R | T | T × R | T | T × R |
CR | DF | 0.015 | 0.850 | <0.001 | <0.001 | <0.001 | <0.001 |
WH | 0.001 | 0.046 | 0.004 | 0.069 | <0.001 | <0.001 | |
WRC | 0.055 | 0.645 | 0.188 | 0.578 | 0.386 | 0.566 | |
GF | 0.084 | <0.001 | 0.094 | <0.001 | 0.128 | 0.024 | |
CF | DF | 0.009 | 0.010 | 0.012 | 0.265 | <0.001 | <0.001 |
WRC | 0.964 | 0.433 | 0.979 | 0.773 | 0.344 | 0.973 |
SGR | SGE | SGL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site | Species | O | T | p > F | O | T | p > F | O | T | p > F |
CF | DF | 0.419 | 0.425 | 0.506 | 0.319 | 0.333 | 0.063 | 0.619 | 0.592 | 0.030 |
WRC | 0.326 | 0.341 | 0.189 | 0.287 | 0.305 | 0.097 | 0.553 | 0.523 | 0.107 | |
CR | DF | 0.403 | 0.424 | 0.110 | 0.305 | 0.319 | 0.174 | 0.605 | 0.596 | 0.369 |
WH | 0.427 | 0.430 | 0.669 | 0.373 | 0.381 | 0.253 | 0.550 | 0.542 | 0.323 | |
WRC | 0.354 | 0.418 | 0.176 | 0..305 | 0.337 | 0.134 | 0.569 | 0.540 | 0.200 | |
GF | 0.360 | 0.385 | 0.199 | 0.299 | 0.322 | 0.110 | 0.600 | 0.566 | 0.329 |
Ring Area (cm2) | EW Area (cm2) | LW Area (cm2) | LW% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | Species | O | T | p > F | O | T | p > F | O | T | p > F | O | T | p > F |
CR | DF | 276.6 | 377.9 | 0.060 | 181.4 | 228.1 | 0.177 | 95.2 | 149.9 | 0.037 | 34.5 | 39.8 | 0.172 |
WH | 141.9 | 342.7 | 0.013 | 95.3 | 239.5 | 0.023 | 46.5 | 103.3 | 0.004 | 32.2 | 31.7 | 0.799 | |
WRC | 195.1 | 218.4 | 0.684 | 155.2 | 153.7 | 0.975 | 38.4 | 66.1 | 0.036 | 21.7 | 31.7 | 0.153 | |
GF | 227.0 | 448.2 | 0.061 | 166.7 | 336.4 | 0.074 | 60.3 | 111.7 | 0.147 | 26.7 | 29.6 | 0.348 | |
CF | DF | 228.9 | 343.5 | 0.015 | 150.0 | 222.3 | 0.057 | 78.9 | 123.4 | 0.012 | 35.1 | 36.6 | 0.649 |
WRC | 275.0 | 265.4 | 0.839 | 218.5 | 218.9 | 0.989 | 38.1 | 44.5 | 0.321 | 14.6 | 17.8 | 0.142 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aernouts, J.; Gonzalez-Benecke, C.A.; Schimleck, L.R. Effects of Vegetation Management on Wood Properties and Plant Water Relations of Four Conifer Species in the Pacific Northwest of the USA. Forests 2018, 9, 323. https://doi.org/10.3390/f9060323
Aernouts J, Gonzalez-Benecke CA, Schimleck LR. Effects of Vegetation Management on Wood Properties and Plant Water Relations of Four Conifer Species in the Pacific Northwest of the USA. Forests. 2018; 9(6):323. https://doi.org/10.3390/f9060323
Chicago/Turabian StyleAernouts, Joyce, Carlos A. Gonzalez-Benecke, and Laurence R. Schimleck. 2018. "Effects of Vegetation Management on Wood Properties and Plant Water Relations of Four Conifer Species in the Pacific Northwest of the USA" Forests 9, no. 6: 323. https://doi.org/10.3390/f9060323
APA StyleAernouts, J., Gonzalez-Benecke, C. A., & Schimleck, L. R. (2018). Effects of Vegetation Management on Wood Properties and Plant Water Relations of Four Conifer Species in the Pacific Northwest of the USA. Forests, 9(6), 323. https://doi.org/10.3390/f9060323